990 resultados para Imaging optics
Resumo:
A novel acousto-optic spectrometer (IfU Diagnostic Systems GmbH) for 2-dimensional (2D) optical emission spectroscopy with high spectral resolution has been developed. The spectrometer is based on acousto-optic tuneable filter technology with fast random wavelength access. Measurements for characterisation of the imaging quality, the spatial resolution, and the spectral resolution are presented. The applicability for 2D-space and phase resolved optical emission spectroscopy (2D-PROES) is shown. 2D-PROES has been applied to an inductively coupled plasma with radio frequency excitation at 13.56 MHz.
Resumo:
We report the discovery of WASP-3b, the third transiting exoplanet to be discovered by the WASP and SOPHIE collaboration. WASP-3b transits its host star USNO-B1.01256-0285133 every 1.846834 +/- 0.000002 d. Our high-precision radial velocity measurements present a variation with amplitude characteristic of a planetary-mass companion and in phase with the light curve. Adaptive optics imaging shows no evidence for nearby stellar companions, and line-bisector analysis excludes faint, unresolved binarity and stellar activity as the cause of the radial velocity variations. We make a preliminary spectroscopic analysis of the host star and find it to have Teff = 6400 +/- 100K and log g = 4.25 +/- 0.05 which suggests it is most likely an unevolved main-sequence star of spectral type F7-8V. Our simultaneous modelling of the transit photometry and reflex motion of the host leads us to derive a mass of 1.76+0.08-0.14 MJ and radius 1.31+0.07-0.14 RJ for WASP-3b. The proximity and relative temperature of the host star suggests that WASP-3b is one of the hottest exoplanets known, and thus has the potential to place stringent constraints on exoplanet atmospheric models.
Temperature Controlled Raman Microscopy for the Imaging of Polymorphic Transitions in Frozen Systems
Resumo:
To visualize the development of an atmospheric pressure glow discharge in He and the influence of polymer film on the discharge, short exposure time images were recorded using a gated intensified charge coupled detector. If the polymer film is stretched in the middle of the gap, a discharge region on each side of the polymer is created with the characteristic structure of a glow discharge. In this case, strongly asymmetric discharge current pulses can be generated depending on the frequency and the applied voltage.
Resumo:
Chemical Imaging (CI) is an emerging platform technology that integrates conventional imaging and spectroscopy to attain both spatial and spectral information from an object. Vibrational spectroscopic methods, such as Near Infrared (NIR) and Raman spectroscopy, combined with imaging are particularly useful for analysis of biological/pharmaceutical forms. The rapid, non-destructive and non-invasive features of CI mark its potential suitability as a process analytical tool for the pharmaceutical industry, for both process monitoring and quality control in the many stages of drug production. This paper provides an overview of CI principles, instrumentation and analysis. Recent applications of Raman and NIR-CI to pharmaceutical quality and process control are presented; challenges facing Cl implementation and likely future developments in the technology are also discussed. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A cellular imaging system, optimized for unstained cells seeded onto a thin substrate, is under development. This system will be a component of the endstation for the microbeam cell-irradiation facility at the University of Surrey. Previous irradiation experiments at the Gray Cancer Institute (GCI) have used Mylar film to support the cells [Folkard, M., Prise, K., Schettino, G., Shao, C., Gilchrist, S., Vojnovic, B., 2005. New insights into the cellular response to radiation using microbeams. Nucl. Instrum. Methods B 231, 189-194]. Although suitable for fluorescence microscopy, the Mylar often creates excessive optical noise when used with non-fluorescent microscopy. A variety of substrates are being investigated to provide appropriate optical clarity, cell adhesion, and radiation attenuation. This paper reports on our investigations to date.
Resumo:
It is well known that magnetic activity in late-type stars increases with increasing rotation rate. Using inversion techniques akin to medical imaging, the rotationally broadened profiles from such stars can be used to reconstruct `Doppler images' of the distribution of cool, dark starspots on their stellar surfaces. Interacting binaries, however, contain some of the most rapidly rotating late-type stars known and thus provide important tests of stellar dynamo models. Furthermore, magnetic activity is thought to play a key role in their evolution, behaviour and accretion dynamics. Despite this, we know comparatively little about the magnetic activity and its influence on such binaries. In this review we summarise the concepts behind indirect imaging of these systems, and present movies of the starspot distributions on the cool stars in some interacting binaries. We conclude with a look at the future opportunities that such studies may provide.
Resumo:
We report on new simultaneous phase-resolved spectroscopic and polarimetric observations of the polar (AM Herculis star) V834 Cen during a high state of accretion. Strong emission lines and high levels of variable circular and linear polarization are observed over the orbital period. The polarization data are modelled using the Stokes imaging technique of Potter et al. The spectroscopic emission lines are investigated using the Doppler tomography technique of Marsh and Horne and the Roche tomography technique of Dhillon and Watson. Up to now, all three techniques have been used separately to investigate the geometry and accretion dynamics in cataclysmic variables. For the first time, we apply all three techniques to simultaneous data for a single system. This allows us to compare and test each of the techniques against each other and hence to derive a better understanding of the geometry, dynamics and system parameters of V834 Cen.