992 resultados para IRON RELEASE
Resumo:
The screening and treatment of latent tuberculosis (TB) infection reduces the risk of progression to active disease and is currently recommended for HIV-infected patients. The aim of this study is to evaluate, in a low TB incidence setting, the potential contribution of an interferon-gamma release assay in response to the mycobacterial latency antigen Heparin-Binding Haemagglutinin (HBHA-IGRA), to the detection of Mycobacterium tuberculosis infection in HIV-infected patients.
Resumo:
Evaluation Studies
Resumo:
info:eu-repo/semantics/nonPublished
Resumo:
Mathematical models of straight-grate pellet induration processes have been developed and carefully validated by a number of workers over the past two decades. However, the subsequent exploitation of these models in process optimization is less clear, but obviously requires a sound understanding of how the key factors control the operation. In this article, we show how a thermokinetic model of pellet induration, validated against operating data from one of the Iron Ore Company of Canada (IOCC) lines in Canada, can be exploited in process optimization from the perspective of fuel efficiency, production rate, and product quality. Most existing processes are restricted in the options available for process optimization. Here, we review the role of each of the drying (D), preheating (PH), firing (F), after-firing (AF), and cooling (C) phases of the induration process. We then use the induration process model to evaluate whether the first drying zone is best to use on the up- or down-draft gas-flow stream, and we optimize the on-gas temperature profile in the hood of the PH, F, and AF zones, to reduce the burner fuel by at least 10 pct over the long term. Finally, we consider how efficient and flexible the process could be if some of the structural constraints were removed (i.e., addressed at the design stage). The analysis suggests it should be possible to reduce the burner fuel lead by 35 pct, easily increase production by 5+ pct, and improve pellet quality.
Resumo:
The micromagnetic structure and energy of 180° domain walls spanning laminar crystals of iron having (100) or (110) surfaces and ranging in thickness from 145 to 580 nm have been investigated by numerical integration of the Landau-Lifshitz-Gilbert equation. Stable equilibrium structures with two flux symmetries were obtained for both crystal orientations at all thicknesses studied.
Computational fluid dynamics: advancements in technology for modeling iron and steelmaking processes
Resumo:
Computational fluid dynamics (CFD) software technology has formed the basis of many investigations into the behavior and optimization of primary iron and steelmaking processes for the last 25+ years. The objective of this contribution is to review the progress in CFD technologies over the last decade or so and how this can be brought to bear in advancing the process analysis capability of primary ferrous operations. In particular, progress on key challenges such as compute performance, fluid-structure transformation and interaction, and increasingly complex geometries are highlighted.
Resumo:
A coated matrix tablet formulation has been used to develop controlled release diltiazem HCl (DIL) tablets. The developed drug delivery system provided prolonged drug release rates over a defined period of time. DIL tablets prepared using dry mixing and direct compression and the core consisted of hydrophilic and hydrophobic polymers such as hydroxypropylmethylcellulose (HPMC), Eudragits RLPO/RSPO, microcrystalline cellulose, and lactose. Tablets were coated with Eudragit NE 30D, and the influence of varying the inert hydrophobic polymers and the amount of the coating polymer were investigated. The release profile of the developed formulation was described by the Higuchi model. Stability trials up to 6 months displayed excellent reproducibility.
Resumo:
The aim of the current study was to evaluate the impact of chitosan derivatives, namely N-octyl-chitosan and N-octyl-O-sulfate chitosan, incorporated in calcium phosphate implants to the release profiles of model drugs. The rate and extent of calcein (on M.W. 650 Da) ED, and FITC-dextran (M.W. 40 kDa) on in vitro release were monitored by fluorescence spectroscopy. Results show that calcein release is affected by the type of chitosan derivative used. A higher percentage of model drug was released when the hydrophilic polymer N-octyl-sulfated chitosan was present in the tablets compared with the tablets containing the hydrophobic polymer N-octyl-chitosan. The release profiles of calcein or FD from tablets containing N-octyl-O-sulfate revealed a complete release for FD after 120 h compared with calcein where 20% of the drug was released over the same time period. These results suggest that the difference in the release profiles observed from the implants is dependent on the molecular weight of the model drugs. These data indicate the potential of chitosan derivatives in controlling the release profile of active compounds from calcium phosphate implants. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The potential of employing zinc polycarboxylate dental cement as a controlled release material has been studied. Benzalkonium chloride was used as the active ingredient, and incorporated at concentrations of 1, 2 and 3% by mass within the cement. At these levels, there was no observable effect on the speed of setting. Release was followed using an ion-selective electrode to determine changes in chloride ion concentration with time. This technique showed that the additive was released when the cured cement was placed in water, with release occurring by a diffusion mechanism for the first 3 h, but continuing beyond that for up to 1 week. Diffusion coefficients were in the range 5.62 × 10(−6) cm(2) s(−1) (for 1% concentration) to 10.90 × 10(−6) cm(2) s(−1) (for 3% concentration). Up to 3% of the total loading of benzalkonium chloride was released from the zinc polycarboxylate after a week, which is similar to that found in previous studies with glass-ionomer cement. It is concluded that zinc polycarboxylate cement is capable of acting as a useful material for the controlled release of active organic compounds.
Resumo:
The aim of the current study was the development of theophylline buccal adhesive tablets using direct compression. Buccal adhesive formulations were developed using a water soluble resin with various combinations of mucoadhesive polymers. The prepared theophylline tablets were evaluated for tensile strength, swelling capacity and ex vivo mucoadhesion performance. Ex vivo mucoadhesion was assessed using porcine gingival tissue and the peak detachment forces were found to be suitable for a buccal adhesive tablet with a maximum of 1.5N approximately. The effect of formulation composition on the release pattern was also investigated. Most formulations showed theophylline controlled release profiles depended on the grade and polymer ratio. The release mechanisms were found to fit Peppas' kinetic model over a period of 5h. In general the majority of the developed formulations presented suitable adhesion and controlled drug release. Copyright © 2010 Elsevier B.V. All rights reserved.
Resumo:
In recent years, the use of swelling polymeric matrices for the encapsulation and controlled release of protein drugs has received significant attention. The purpose of the present study was to investigate the release of albumin, a model protein from alginate/hydroxypropyl-methylcellulose (HPMC) gel beads. A hydrogel system comprised of two natural, hydrophilic polymers; sodium alginate and HPMC was studied as a carrier of bovine serum albumin (BSA) which was used as a model protein. The morphology, bead size and the swelling ratio were studied in different physical states; fully swollen, dried and reswollen using scanning electron microscopy and image analysis. Finally the effect of different alginate/HPMC ratios on the BSA release profile in physiological saline solution was investigated. Swelling experiments revealed that the bead diameter increases with the viscosity of the alginate solution while the addition of HPMC resulted in a significant increase of the swelling ratio. The BSA release patterns showed that the addition of HPMC increased the protein-release rate while the release mechanism fitted the Peppas model. Alginate/HPMC beads prepared using the ionic gelation exhibited high BSA loading efficiency for all formulations. The presence of HPMC increased the swelling ability of the alginate beads while the particle size remained unaffected. Incorporation of HPMC in the alginate gels also resulted in improved BSA release in physiological saline solution. All formulations presented a non-Fickian release mechanism described by the Peppas model. In addition, the implementation of non-parametric tests showed significant differences in the release patterns between the alginate/HPMC and the pure alginate beads, respectively.
Resumo:
A new series of iron(III) complexes [Fe(L(1))(HL(1))], [Fe(L(1)) Cl]; [H2L(1) = N'-(2-methoxythiobenzoyl)pyridine-2-carbohydrazide], [Fe(L(2))(acac)], [Fe(HL(2))2 Cl]; [H2L(2) = N'-(4-methoxythiobenzoyl)pyridine-2-carbohydrazide] and [Fe(L(3)) (acac)]; [H2L(3) = N'-(2-hydroxythiobenzoyl)pyridine-2-carbohydrazide] were prepared by stirring/refluxing/mixing the respective ligand with FeCl3/Fe(acac)3 in chloroform/methanol. All the compounds were characterized by elemental analyses, magnetic susceptibility, IR, UV and Mossbauer spectral data. The complexes high/low spin state and have tetrahedral/octahedral geometry.
Resumo:
Cylindrical specimens (6 mm high x 4 mm diameter) of the endodontic grade glass-ionomer (Ketac Endo) were exposed to various media for 1 week, after which changes in their mass, pH of storage medium, and ion release were determined. In water, this cement was shown to release reasonable amounts of sodium, aluminium and silicon, together with smaller amounts of calcium and phosphorus, as well as taking up 2.41% by mass of water. A comparison with the restorative grade materials (Ketac Molar, ex 3M ESPE and Fuji IX, ex GC) showed both ion release and water uptake to be greater. All three cements shifted pH from 7 to around 6 with no significant differences between them. Other storage media were found to alter the pattern of ion release. Lactic acid caused an increase, whereas both saturated calcium hydroxide and 0.6% sodium hypochlorite, caused decreases. This suppression of ion-release may be significant clinically. Aluminium is the most potentially hazardous of the ions involved but amounts released were low compared with levels previously reported to show biological damage.
Resumo:
As the trend toward further miniaturisation of pocket and handheld consumer electronic products continues apace, the requirements for even smaller solder joints will continue. With further reductions in the size of solder joints, the reliability of solder joints will become more and more critical to the long-term performance of electronic products. Solder joints play an important role in electronics packaging, serving both as electrical interconnections between the components and the board, and as mechanical support for components. With world-wide legislation for the removal/reduction of lead and other hazardous materials from electrical and electronic products, the electronics manufacturing industry has been faced with an urgent search for new lead-free solder alloy systems and other solder alternatives. In order to achieve high volume, low cost production, the stencil printing process and subsequent wafer bumping of solder paste has become indispensable. There is wide agreement in industry that the paste printing process accounts for the majority of assembly defects, and most defects originate from poor understanding of the effect of printing process parameters on printing performance. The printing of ICAs and lead-free solder pastes through the very small stencil apertures required for flip chip applications was expected to result in increased stencil clogging and incomplete transfer of paste to the printed circuit pads. Paste release from the stencil apertures is dependent on the interaction between the solder paste, surface pad and aperture wall; including its shape. At these very narrow aperture sizes the paste rheology becomes crucial for consistent paste withdrawal because for smaller paste volumes surface tension effects become dominant over viscous flow. Successful aperture filling and release will greatly depend on the rheology of the paste material. Wall-slip plays an important role in characterising the flow behaviour of solder paste materials. The wall- slip arises due to the various attractive and repulsive forces acting between the solder particles and the walls of the measuring geometry. These interactions could lead to the presence of a thin solvent layer adjacent to the wall, which gives rise to slippage. The wall slip effect can play an important role in ensuring successful paste release after the printing process. The aim of this study was to investigate the influence of the paste microstructure on slip formation for the paste materials (lead-free solder paste and isotropic conductive adhesives). The effect of surface roughness on the paste viscosity was investigated. It was also found that altering the surface roughness of the parallel plate measuring geometry did not significantly eliminate wall slip as was expected. But results indicate that the use of a relatively rough surface helps to increase paste adhesion to the plates, inducing structural breakdown of the paste. Most importantly, the study also demonstrated on how the wall slip formation in the paste material could be utilised for understanding of the paste microstructure and its flow behaviour