954 resultados para INTRACELLULAR CALCIUM
Resumo:
The role of metal ions in determining the solution conformation of the Holliday junction is well established, but to date the picture of metal ion binding from structural studies of the four-way DNA junction is very incomplete. Here we present two refined structures of the Holliday junction formed by the sequence d(TCGGTACCGA) in the presence of Na+ and Ca2+, and separately with Sr2+ to resolutions of 1.85 Angstrom and 1.65 Angstrom, respectively. This sequence includes the ACC core found to promote spontaneous junction formation, but its structure has not previously been reported. Almost complete hydration spheres can be defined for each metal cation. The Na+ sites, the most convincing observation of such sites in junctions to date, are one on either face of the junction crossover region, and stabilise the ordered hydration inside the junction arms. The four Ca2+ sites in the same structure are at the CG/CG steps in the minor groove. The Sr2+ ions occupy the TC/AG, GG/CC, and TA/TA sites in the minor groove, giving ten positions forming two spines of ions, spiralling through the minor grooves within each arm of the stacked-X structure. The two structures were solved in the two different C2 lattices previously observed, with the Sr2+ derivative crystallising in the more highly symmetrical form with two-fold symmetry at its centre. Both structures show an opening of the minor groove face of the junction of 8.4degrees in the Ca2+ and Na+ containing structure, and 13.4degrees in the Sr2+ containing structure. The crossover angles at the junction are 39.3degrees and 43.3degrees, respectively. In addition to this, a relative shift in the base pair stack alignment of the arms of 2.3 Angstrom is observed for the Sr2+ containing structure only. Overall these results provide an insight into the so-far elusive stabilising ion structure for the DNA Holliday junction. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Peroxynitrite is thought to contribute to the progression of many diseases including cardiovascular disease, cancer, and neurodegenerative disorders. We report that pre-treatment of fibroblasts with the citrus flavanone, hesperetin, prior to peroxynitrite exposure protects against peroxynitrite-mediated cytotoxicity. This protection was partially mediated by the intracellular scavenging of peroxynitrite by hesperctin as exposure of fibroblasts to peroxynitrite following hesperetin loading led to the formation of two intracellular nitrohesperetin derivatives. In addition, protection appeared to be mediated by hesperetin-induced changes in MAP kinase signalling. Exposure of fibroblasts to hesperetin led to concentration-dependent increases in the phosphorylation of ERK1/2 and was observed to restore peroxynitrite-mediated decreases in ERK1/2 phosphorylation. We propose that the protective potential of hesperetin in fibroblasts may be mediated both by intracellular scavenging of peroxynitrite and by modulation of fibroblast signalling. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Addition of 25 mM calcium chloride to soy milk reduced pH, increased ionic calcium and caused it to coagulate. The effects of different chelating agents were investigated on selected physicochemical properties of soy milk and on preventing coagulation. The soy milks were then pasteurised to examine how heat treatment changed some of these properties as well as to evaluate their effects on heat stability. Sediment formation and susceptibility to coagulation could be reduced by decreasing ionic calcium and increasing pH. To achieve this, the most effective chelating agents were tri-sodium citrate and disodium hydrogen phosphate. These chelating agents also reduce absolute viscosity and particle size. Sodium hexa meta phosphate was also effective, but less so; it reduced ionic calcium but had a less noticeable effect on pH. The disodium salt of ethylenediamine tetraacetic acid was not effective, as it decreased the pH of soy milk. Ionic calcium and pH are useful indicators of heat stability of calcium-fortified soy beverages. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Soymilks with sodium hexametaphosphate (SHMP) (0% to 1.2%) and calcium chloride (12.50, 18.75, and 25.00 mM Ca),were analyzed for total Ca, Ca ion concentration, pH, kinematic viscosity, particle diameter, and sediment after pasteurization. Higher added Ca led to significant (P <= 0.05) increases in Ca ion concentration and significant (P <= 0.05) decreases in pH. At certain levels of SHMP, higher concentrations of added Ca significantly increased (P <= 0.05) kinematic viscosity, particle diameter, and sediment. Increasing SHMP concentration reduced Ca ion concentration, particle diameter, and dry sediment content, but reduced kinematic viscosity of samples (P <= 0.05). Adding SHMP up to 0.7% influenced pH of soymilk in different ways, depending on the level of Ca addition. When the pH of Ca-fortified soymilk was adjusted to a higher level, ionic Ca decreased as pH increased. Ihere was a negative linear relationship between the logarithm of ionic Ca concentration and the adjusted pH of the soymilk. Ionic Ca appeared to be a good indicator of thermally induced sediment formation, with little sediment being produced if ionic Ca was maintained below 0.4 mM.
Resumo:
The cellular actions of genistein are believed to mediate the decreased risk of breast cancer associated with high soy consumption. We have investigated the intracellular metabolism of genistein in T47D tumorigenic and MCF-10A nontumorigenic cells and assessed the cellular actions of resultant metabolites. Genistein selectively induced growth arrest and G2-M phase cell cycle block in T47D but not MCF10A breast epithelial cells. These antiproliferative effects were paralleled by significant differences in the association of genistein to cells and in particular its intracellular metabolism. Genistein was selectively taken up into T47D cells and was subject to metabolism by CYP450 enzymes leading to the formation of both 5,7,3',4'-tetrahydroxyisoflavone (THIF) and two glutathionyl conjugates of THIF THIF inhibited cdc2 activation via the phosphorylation of p38 MAP kinase, suggesting that this species may mediate genistein's cellular actions. THIF exposure activated p38 and caused subsequent inhibition of cyclin B1 (Ser 147) and cdc2 (Thr 161) phosphorylation, two events critical for the correct functioning of the cdc2-cyclin B1 complex. We suggest that the formation of THIF may mediate the cellular actions of genistein in tumorigenic breast epithelial cells via the activation of signaling through p38. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
There are many reports in the literature regarding the effects of ionic calcium on reactions related to casein micelle stability, such as heat stability, ethanol stability and susceptibility to gelation, sediment formation and fouling. However, experimental evidence supporting these assertions is much less readily available. This paper evaluates three selective ion electrode systems for measuring ionic calcium directly in milk as well as looking at the effects on pH reduction and addition of calcium chloride. The best electrode system was the Ciba Corning 634 system, which was designed for blood but has been modified for milk. This was found to be reproducible and stable when calibrated daily and allowed direct measurements to be taken on milk in 70 s. This has been found to perform well now for 3 years. The other systems were not so useful, as they took longer to stabilize, but may be useful for higher ionic calcium concentrations, which are found in acidified milk products. Reducing the pH increased ionic calcium and reduced ethanol stability. Calcium chloride addition reduced pH, increased ionic calcium and reduced the ethanol stability. Readjusting the pH to its value before calcium addition reduced the ionic calcium, but not back to its original value. Milks from individual cows showed wide variations in their ionic calcium concentrations. This establishes the methodology for a more detailed investigation on measurement of ionic calcium in milks from individual cows and from bulk milks, to allow a better understanding of its role in casein micelle stability.
Resumo:
Calcium removal, using Duolite C433 ion exchange resin, was faster from permeate than from milk. Almost all calcium could be removed, suggesting a fairly rapid conversion from both soluble calcium phosphate and from micellar calcium to ionic calcium. Calcium reduction from milk is accompanied by an increase in pH, a reduction in ionic calcium, an increase in ethanol stability and an increase in the rennet coagulation time. There is a gradual increase in the average casein micelle size with calcium removal, up to a point where the micelle size increases dramatically. Zeta potential becomes more negative with calcium removal. At higher levels of calcium removal, the changes are not reversible, on reducing pH to its original value. For goat's milk, over the range 0-20% total calcium removal, relatively small reductions in total calcium gave rise to proportionally larger reductions in ionic calcium in a ratio of about 1:3.2.
Resumo:
Cationic swede and anionic turnip peroxidases were partially purified by ion-exchange and gel-filtration chromatography, respectively. Heat treatment of these enzymes and of a commercial high purity horseradish peroxidase (HRP) caused a loss of enzyme activity and a corresponding increase in linoleic acid hydroperoxide formation activity. The hydroperoxide levels in model systems increased only in the early stages of the oxidation reaction and then declined as degradation became more significant. The presence of a dialysed blend of cooked swede markedly lowered the hydroperoxide level formed. Analysis of volatile compounds formed showed that hexanal predominated in a buffer system and in a blend of cooked turnip. In dialysed blends of cooked swede, hexanol was the primary volatile compound generated. After inactivation under mild conditions in the presence of EDTA, the peroxidases showed hydroperoxide formation activity and patterns of volatile compounds from linoleic acid that were similar to those found on heat-inactivation. This suggested that calcium abstraction from the peroxidases was critical for the enhancement of lipid oxidation activity. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Neuropathic pain is a difficult state to treat, characterized by alterations in sensory processing that can include allodynia (touch-evoked pain). Evidence exists for nerve damage-induced plasticity in both transmission and modulatory systems, including changes in voltage-dependent calcium channel (VDCC) expression and function; however, the role of Ca(v)2.3 calcium channels has not clearly been defined. Here, the effects of SNX-482, a selective Ca(v)2.3 antagonist, on sensory transmission at the spinal cord level have been investigated in the rat. The spinal nerve ligation (SNL) model of chronic neuropathic pain [Kim & Chung, (1992) Pain, 50, 355-363] was used to induce mechanical allodynia, as tested on the ipsilateral hindpaw. In vivo electrophysiological measurements of dorsal horn neuronal responses to innocuous and noxious electrical and natural stimuli were made after SNL and compared to sham-operated animals. Spinal SNX-482 (0.5-4 mu g/50 mu L) exerted dose-related inhibitions of noxious C-fibre- and A delta-fibre-mediated neuronal responses in conditions of neuropathy, but not in sham-operated animals. Measures of spinal cord hyperexcitability and nociception were most susceptible to SNX-482. In contrast, non-noxious A beta-mediated responses were not affected by SNX-482. Moreover, responses to innocuous mechanical and also thermal stimuli were more sensitive to SNX-482 in SNL than control animals. This study is the first to demonstrate an antinociceptive role for SNX-482-sensitive channels in dorsal horn neurons during neuropathy. These data are consistent with plasticity in Ca(V)2.3 calcium channel expression and suggest a potential selective target to reduce nociceptive transmission during conditions of nerve damage.
Resumo:
Understanding the cellular effects of flavonoid metabolites is important for predicting which dietary flavonoids might be most beneficial in vivo. Here we investigate the bioactivity in dermal fibroblasts of the major reported in vivo metabolites of quercetin, i.e. 3'-O-methyl quercetin, 4'-O-methyl quercetin and quercetin 7-O-beta-D-glucuronide, relative to that of quercetin, in terms of their further metabolism and their resulting cytotoxic and/or cytoprotective effects in the absence and presence of oxidative stress. Uptake experiments indicate that exposure to quercetin led to the generation of two novel cellular metabolites, one characterized as a 2'-glutathionyl quercetin conjugate and another product with similar spectral characteristics but 1 mass unit lower, putatively a quinone/quinone methide. A similar product was identified in cells exposed to 3'-O-methyl quercetin, but not in the lysates of those exposed to its 4'-O-methyl counterpart, suggesting that its formation is related to oxidative metabolism. There was no uptake or metabolism of quercetin 7-O-beta-D-glucuronide by fibroblasts. Formation of oxidative metabolites may explain the observed concentration-dependent toxicity of quercetin and 3'-O-methyl quercetin, whereas the formation of a 2'-glutathionyl quercetin conjugate is interpreted as a detoxification step. Both O -methylated metabolites conferred less protection than quercetin against peroxide-induced damage, and quercetin glucuronide was ineffective. The ability to modulate cellular toxicity paralleled the ability of the compounds to decrease the level of peroxide-induced caspase-3 activation. Our data suggest that the actions of quercetin and its metabolites in vivo are mediated by intracellular metabolites.
Resumo:
The influence of soil organisms on metal mobility and bioavailability in soils is not currently fully understood. We conducted experiments to determine whether calcium carbonate granules secreted by the earthworm Lumbricus terrestris could incorporate and immobilise lead in lead- and calcium- amended artificial soils. Soil lead concentrations were up to 2000 mg kg-1 and lead:calcium ratios by mass were 0.5-8. Average granule production rates of 0.39 + 0.04 mgcalcite earthworm-1 day-1 did not vary with soil lead concentration. The lead:calcium ratio in granules increased significantly with that of the soil (r2 = 0.81, p = 0.015) with lead concentrations in granules reaching 1577 mg kg-1. X-ray diffraction detected calcite and aragonite in the granules with indications that lead was incorporated into the calcite at the surface of the granules. In addition to the presence of calcite and aragonite X-ray absorption spectroscopy indicated that lead was present in the granules mainly as complexes sorbed to the surface but with traces of lead-bearing calcite and cerussite. The impact that lead-incorporation into earthworm calcite granules has on lead mobility at lead-contaminated sites will depend on the fraction of total soil lead that would be otherwise mobile.