962 resultados para INJURY-INDUCED HYPERTENSION
Resumo:
Introduction: Contrast-induced nephropathy is one of the main causes of acute kidney injury and increased hospital-acquired morbidity and mortality. The use of sodium bicarbonate for nephroprotection has emerged as a preventative strategy; however, its efficacy is controversial compared to other strategies, such as hydration using 0.9% saline solution. Objective: To compare the effectiveness of sodium bicarbonate vs. hydration using 0.9% saline solution to prevent contrast-induced acute kidney injury. Methods: A systematic review of studies registered in the COCHRANE, PUBMED, MEDLINE, LILACS, SCIELO and EMBASE databases was conducted. Randomized controlled studies that evaluated the use of 0.9% saline solution vs. sodium bicarbonate to prevent contrast-induced nephropathy were included. Results: A total of 22 studies (5,686 patients) were included. Sodium bicarbonate did not decrease the risk of contrast-induced nephropathy (RD= 0.00; 95% CI= -0.02 to 0.03; p= 0.83; I2= 0%). No significant differences were found in the demand for renal replacement therapy (RD= 0.00; 95% CI= -0.01 to 0-01; I2= 0%; p= 0.99) or in mortality (RD= -0.00; 95% CI= -0.001 to 0.001; I2= 0%; p= 0.51). Conclusions: Sodium bicarbonate administration is not superior to the use of 0.9% saline solution for preventing contrast-induced nephropathy in patients with risk factors, nor is it better at reducing mortality or the need for renal replacement therapy.
Resumo:
Pulmonary arterial hypertension (PAH) is a progressive disease of the small pulmonary arteries, characterised by pulmonary vascular remodelling due to excessive proliferation and resistance to apoptosis of pulmonary artery endothelial cells (PAECs) and pulmonary artery smooth muscle cells (PASMCs). The increased pulmonary vascular resistance and elevated pulmonary artery pressures result in right heart failure and premature death. Germline mutations of the bone morphogenetic protein receptor-2 (bmpr2) gene, a receptor of the transforming growth factor beta (TGF-β) superfamily, account for approximately 75%-80% of the cases of heritable form of PAH (HPAH) and 20% of sporadic cases or idiopathic PAH (IPAH). IPAH patients without known bmpr2 mutations show reduced expression of BMPR2. However only ~ 20% of bmpr2-mutation carriers will develop the disease, due to an incomplete penetrance, thus the need for a ‘second hit’ including other genetic and/or environmental factors is accepted. Diagnosis of PAH occurs most frequently when patients have reached an advanced stage of disease. Although modern PAH therapies can markedly improve a patient’s symptoms and slow the rate of clinical deterioration, the mortality rate from PAH remains unacceptably high. Therefore, the development of novel therapeutic approaches is required for the treatment of this multifaceted disease. Noncoding RNAs (ncRNAs) include microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). MiRNAs are ~ 22 nucleotide long and act as negative regulators of gene ex-pression via degradation or translational inhibition of their target mRNAs. Previous studies showed extensive evidence for the role of miRNAs in the development of PAH. LncRNAs are transcribed RNA molecules greater than 200 nucleotides in length. Similar to classical mRNA, lncRNAs are translated by RNA polymerase II and are generally alternatively spliced and polyadenylated. LncRNAs are highly versatile and function to regulate gene expression by diverse mechanisms. Unlike miRNAs, which exhibit well-defined actions in negatively regulating gene expression via the 3’-UTR of mRNAs, lncRNAs play more diverse and unpredictable regulatory roles. Although a number of lncRNAs have been intensively investigated in the cancer field, studies of the role of lncRNAs in vascular diseases such as PAH are still at a very early stage. The aim of this study was to investigate the involvement of specific ncRNAs in the development of PAH using experimental animal models and cell culture. The first ncRNA we focused on was miR-143, which is up-regulated in the lung and right ventricle tissues of various animal models of PH, as well as in the lungs and PASMCs of PAH patients. We show that genetic ablation of miR-143 is protective against the development of chronic hypoxia induced PH in mice, assessed via measurement of right ventricular systolic pressure (RVSP), right ventricular hypertrophy (RVH) and pulmonary vascular remodelling. We further report that knockdown of miR-143-3p in WT mice via anti-miR-143-3p administration prior to exposure of mice to chronic hypoxia significantly decreases certain indices of PH (RVSP) although no significant changes in RVH and pulmo-nary vascular remodelling were observed. However, a reversal study using antimiR-143-3p treatment to modulate miR-143-3p demonstrated a protective effect on RVSP, RVH, and muscularisation of pulmonary arteries in the mouse chronic hypoxia induced PH model. In vitro experiments showed that miR-143-3p overexpression promotes PASMC migration and inhibits PASMC apoptosis, while knockdown miR-143-3p elicits the opposite effect, with no effects observed on cellular proliferation. Interestingly, miR-143-3p-enriched exosomes derived from PASMCs mediated cell-to-cell communication between PASMCs and PAECs, contributing to the pro-migratory and pro-angiogenic phenotype of PAECs that underlies the pathogenesis of PAH. Previous work has shown that miR-145-5p expression is upregulated in the chronic hypoxia induced mouse model of PH, as well as in PAH patients. Genetic ablation and pharmacological inhibition (subcutaneous injection) of miR-145-5p exert a protective against the de-velopment of PAH. In order to explore the potential for alternative, more lung targeted delivery strategies, miR-145-5p expression was inhibited in WT mice using intranasal-delivered antimiR-145-5p both prior to and post exposure to chronic hypoxia. The decreased expression of miR-145-5p in lung showed no beneficial effect on the development of PH compared with control antimiRNA treated mice exposed to chronic hypoxia. Thus, miR-143-3p modulated both cellular and exosome-mediated responses in pulmonary vascular cells, while the inhibition of miR-143-3p prevented the development of experimental pulmonary hypertension. We focused on two lncRNAs in this project: Myocardin-induced Smooth Muscle Long noncoding RNA, Inducer of Differentiation (MYOSLID) and non-annotated Myolnc16, which were identified from RNA sequencing studies in human coronary artery smooth muscle cells (HCASMCs) that overexpress myocardin. MYOSLID was significantly in-creased in PASMCs from patients with IPAH compared to healthy controls and increased in circulating endothelial progenitor cells (EPCs) from bmpr2 mutant PAH patients. Exposure of PASMCs to hypoxia in vitro led to a significant upregulation in MYOSLID expres-sion. MYOSLID expression was also induced by treatment of PASMC with BMP4, TGF-β and PDGF, which are known to be triggers of PAH in vitro. Small interfering RNA (siR-NA)-mediated knockdown MYOSLID inhibited migration and induced cell apoptosis without affecting cell proliferation and upregulated several genes in the BMP pathway in-cluding bmpr1α, bmpr2, id1, and id3. Modulation of MYOSLID also affected expression of BMPR2 at the protein level. In addition, MYOSLID knockdown affected the BMP-Smad and BMP-non-Smad signalling pathways in PASMCs assessed by phosphorylation of Smad1/5/9 and ERK1/2, respectively. In PAECs, MYOSLID expression was also induced by hypoxia exposure, VEGF and FGF2 treatment. In addition, MYOSLID knockdown sig-nificantly decreased the proliferation of PAECs. Thus, MYOSLID may be a novel modulator in pulmonary vascular cell functions, likely through the BMP-Smad and –non-Smad pathways. Treatment of PASMCs with inflammatory cytokines (IL-1 and TNF-α) significantly in-duced the expression of Myolnc16 at a very early time point. Knockdown of Myolnc16 in vitro decreased the expression of il-6, and upregulated the expression of il-1 and il-8 in PASMCs. Moreover, the expression levels of chemokines (cxcl1, cxcl6 and cxcl8) were sig-nificantly decreased with Myolnc16 knockdown. In addition, Myolnc16 knockdown decreased the MAP kinase signalling pathway assessed by phosphorylation of ERK1/2 and p38 MAPK and inhibited cell migration and proliferation in PASMCs. Thus, Myolnc16 may a novel modulator of PASMCs functions through anti-inflammatory signalling pathways. In summary, in this thesis we have demonstrated how miR-143-3p plays a protective role in the development of PH both in vivo animal models and patients, as well as in vitro cell cul-ture. Moreover, we have showed the role of two novel lncRNAs in pulmonary vascular cells. These ncRNAs represent potential novel therapeutic targets for the treatment of PAH with further work addressing to investigate the target genes, and the pathways modulated by these ncRNAs during the development of PAH.
Resumo:
Background: Balloon pulmonary angioplasty (BPA) has recently been developed as an alternative and less- invasive treatment strategy for chronic thromboembolic pulmonary hypertension (CTEPH), but therapeutic efficacy and technical safety of the technique have to be established. Aim: effects of BPA on patients with inoperable disease or residual pulmonary hypertension (PH) after pulmonary endarterectomy (PEA). Methods: From June 2015 to September 2019 we enrolled symptomatic (NYHA ≥ II) inoperable CTEPH patients and patients with residual PH after PEA. At baseline, immediately before the first BPA session and 3-6 months after last BPA session all patients underwent clinical evaluation, six-minute walking distance and right heart catheterization. For comparisons Friedman test (with Bonferroni post-hoc pairwise analysis) was used. Survival curves were done with Kaplan Meier method. Results: Forty-seven patients [male 45%, median age 68 (51-74) years, 40 inoperable and 7 with residual PH after PEA] were treated for a total of 136 sessions (median number of sessions for each patient: 2); during each session we treated 2 (2-3) vessels; BPA significantly improved symptoms (NYHA III-IV from 85 to 42%), exercise capacity (from 425 to 446 m) and hemodynamic profile (reduction of mean pulmonary arterial pressure from 41 to 35 mmHg and of pulmonary vascular resistance from 7.1 to 4.7 WU). Five pulmonary artery dissection and 2 hemoptysis with clinical impairment were documented; 33 patients had lung injury (radiographic opacity with/without hemoptysis and/or hypoxemia), 7 patients had access site complications. Five patients died during follow-up (none within 30 days from the procedure) because of sepsis (1), heart failure (1), cancer (1), arrhythmic storm (1) and sudden death in a patient with severe coronary atherosclerosis (1). Conclusions: BPA is a safe and effective treatment able to improve symptoms and hemodynamic profile in inoperable CTEPH patients and in patients with residual PH after PEA.
Resumo:
Spinal Cord Injury (SCI) is a devastating condition for human and animal health. In SCI particularly, neurons, oligodendrocytes precursor cells, and mature oligodendrocytes are highly vulnerable to the toxic microenvironment after the lesion and susceptible to the elevated levels of noxious stimuli. Thus the regenerative response of the organism in case of SCI is significantly reduced, and only little spontaneous amelioration is observed in lesioned patients during the early phases. This work mainly focuses on studying and characterizing the modification induced by the SCI in a preclinical animal model. We investigated the ECM composition in the spinal cord segments surrounding the primary lesion site at a gene expression level. We found Timp1 and CD44 as a crucial hub in the secondary cascade of SCI in both spinal cord segments surrounding the lesion site. Interestingly, a temporal and anatomical difference in gene expression, indicating a complex regulation of ECM genes after SCI that could be used as a tool for regenerative medicine. We also investigated the modification in synaptic plasticity-related gene expression in spinal and supraspinal areas involved in motor control. We confirmed the anatomical and temporal difference in gene expression in spinal cord tissue. This analysis suggests that a molecular mapping of the lesion-induced modification could be a useful tool for regenerative medicine. In the last part, we evaluated the efficacy of an implantable biopolymer loaded with an anti-inflammatory drug and a pro-myelinating agent on the acute phase of SCI in our preclinical model. We found a consistent reduction of the inflammatory state in the spinal lesion site and the cord's surrounding segments. Moreover, we found increased preservation of the spinal cord tissue with a related upregulation of neuronal and oligodendroglial markers after lesion. Our treatment showed effective ameliorating functional outcome and reducing the lesion extension in the chronic phase.
Resumo:
Snakebite is a neglected disease and serious health problem in Brazil, with most bites being caused by snakes of the genus Bothrops. Although serum therapy is the primary treatment for systemic envenomation, it is generally ineffective in neutralizing the local effects of these venoms. In this work, we examined the ability of 7,8,3'-trihydroxy-4'-methoxyisoflavone (TM), an isoflavone from Dipteryx alata, to neutralize the neurotoxicity (in mouse phrenic nerve-diaphragm preparations) and myotoxicity (assessed by light microscopy) of Bothrops jararacussu snake venom in vitro. The toxicity of TM was assessed using the Salmonella microsome assay (Ames test). Incubation with TM alone (200 μg/mL) did not alter the muscle twitch tension whereas incubation with venom (40 μg/mL) caused irreversible paralysis. Preincubation of TM (200 μg/mL) with venom attenuated the venom-induced neuromuscular blockade by 84% ± 5% (mean ± SEM; n = 4). The neuromuscular blockade caused by bothropstoxin-I (BthTX-I), the major myotoxic PLA2 of this venom, was also attenuated by TM. Histological analysis of diaphragm muscle incubated with TM showed that most fibers were preserved (only 9.2% ± 1.7% were damaged; n = 4) compared to venom alone (50.3% ± 5.4% of fibers damaged; n = 3), and preincubation of TM with venom significantly attenuated the venom-induced damage (only 17% ± 3.4% of fibers damaged; n = 3; p < 0.05 compared to venom alone). TM showed no mutagenicity in the Ames test using Salmonella strains TA98 and TA97a with (+S9) and without (-S9) metabolic activation. These findings indicate that TM is a potentially useful compound for antagonizing the neuromuscular effects (neurotoxicity and myotoxicity) of B. jararacussu venom.
Resumo:
Paracoccidioidomycosis is a systemic mycosis that is endemic to certain countries in Latin America. This study aimed to describe the histological features of liver involvement in patients with paracoccidioidomycosis aged <16 years of age who were treated between 1980 and 2010, with a diagnosis that was confirmed by detection of the fungus by pathological examination. Liver tissue was obtained from one necropsy and 12 biopsies. Throughout 2007, biopsies were taken from patients with persistent jaundice or portal hypertension, after which biopsies became indicated due to elevated aminotransferase and low albumin levels. Using haematoxylin and eosin (H&E), Masson's trichrome and immunohistochemical (CK7 and CK19) staining, we noted degenerative alterations in bile duct cells and inflammatory injury to the bile ducts in 10 biopsies. Using immunohistochemistry for CK7 and CK19, we observed ductal proliferation in all 12 samples. Bile duct injuries by inflammatory cells might explain the predominant increase in canalicular enzymes; immunohistochemistry is more sensitive in demonstrating ductular reactions and might show changes that are not apparent on H&E staining.
Resumo:
Valproic acid (VPA) and trichostatin A (TSA) are known histone deacetylase inhibitors (HDACIs) with epigenetic activity that affect chromatin supra-organization, nuclear architecture, and cellular proliferation, particularly in tumor cells. In this study, chromatin remodeling with effects extending to heterochromatic areas was investigated by image analysis in non-transformed NIH 3T3 cells treated for different periods with different doses of VPA and TSA under conditions that indicated no loss of cell viability. Image analysis revealed chromatin decondensation that affected not only euchromatin but also heterochromatin, concomitant with a decreased activity of histone deacetylases and a general increase in histone H3 acetylation. Heterochromatin protein 1-α (HP1-α), identified immunocytochemically, was depleted from the pericentromeric heterochromatin following exposure to both HDACIs. Drastic changes affecting cell proliferation and micronucleation but not alteration in CCND2 expression and in ratios of Bcl-2/Bax expression and cell death occurred following a 48-h exposure of the NIH 3T3 cells particularly in response to higher doses of VPA. Our results demonstrated that even low doses of VPA (0.05 mM) and TSA (10 ng/ml) treatments for 1 h can affect chromatin structure, including that of the heterochromatin areas, in non-transformed cells. HP1-α depletion, probably related to histone demethylation at H3K9me3, in addition to the effect of VPA and TSA on histone H3 acetylation, is induced on NIH 3T3 cells. Despite these facts, alterations in cell proliferation and micronucleation, possibly depending on mitotic spindle defects, require a longer exposure to higher doses of VPA and TSA.
Resumo:
32
Resumo:
Radiotherapy (RT) is a risk factor for accelerated carotid artery atherosclerotic disease in subjects with head and neck cancer. However, the risk factors of RT-induced carotid artery remodeling are not established. This study aimed to investigate the effects of RT on carotid and popliteal arteries in subjects with head and neck cancer and to evaluate the relationship between baseline clinical and laboratory features and the progression of RT-induced atherosclerosis. Eleven men (age = 57.9 ± 6.2years) with head and neck cancer who underwent cervical bilateral irradiation were prospectively examined by clinical and laboratory analysis and by carotid and popliteal ultrasound before and after treatment (mean interval between the end of RT and the post-RT assessment = 181 ± 47 days). No studied subject used hypocholesterolemic medications. Significant increases in carotid intima-media thickness (IMT) (0.95 ± 0.08 vs. 0.87 ± 0.05 mm; p < 0.0001) and carotid IMT/diameter ratio (0.138 ± 0.013 vs. 0.129 ± 0.014; p = 0.001) were observed after RT, while no changes in popliteal structural features were detected. In addition, baseline low-density lipoprotein cholesterol levels showed a direct correlation with RT-induced carotid IMT change (r = 0.66; p = 0.027), while no other studied variable exhibited a significant relationship with carotid IMT change. These results indicate that RT-induced atherosclerosis is limited to the irradiated area and also suggest that it may be predicted by low-density lipoprotein cholesterol levels in subjects with head and neck cancer.
Resumo:
Nearly 50% of patients with heart failure (HF) have preserved LV ejection fraction, with interstitial fibrosis and cardiomyocyte hypertrophy as early manifestations of pressure overload. However, methods to assess both tissue characteristics dynamically and noninvasively with therapy are lacking. We measured the effects of mineralocorticoid receptor blockade on tissue phenotypes in LV pressure overload using cardiac magnetic resonance (CMR). Mice were randomized to l-nitro-ω-methyl ester (l-NAME, 3 mg/mL in water; n=22), or l-NAME with spironolactone (50 mg/kg/day in subcutaneous pellets; n=21). Myocardial extracellular volume (ECV; marker of diffuse interstitial fibrosis) and the intracellular lifetime of water (τic; marker of cardiomyocyte hypertrophy) were determined by CMR T1 imaging at baseline and after 7 weeks of therapy alongside histological assessments. Administration of l-NAME induced hypertensive heart disease in mice, with increases in mean arterial pressure, LV mass, ECV, and τic compared with placebo-treated controls, while LV ejection fraction was preserved (>50%). In comparison, animals receiving both spironolactone and l-NAME (l-NAME+S) showed less concentric remodeling, and a lower myocardial ECV and τic, indicating decreased interstitial fibrosis and cardiomyocyte hypertrophy (ECV: 0.43 ± 0.09 for l-NAME versus 0.25 ± 0.03 for l-NAME+S, P<0.001; τic: 0.42 ± 0.11 for l-NAME groups versus 0.12 ± 0.05 for l-NAME+S group). Mice treated with a combination of l-NAME and spironolactone were similar to placebo-treated controls at 7 weeks. Spironolactone attenuates interstitial fibrosis and cardiomyocyte hypertrophy in hypertensive heart disease. CMR can phenotype myocardial tissue remodeling in pressure-overload, furthering our understanding of HF progression.
Resumo:
P2X7 receptors play an important role in inflammatory hyperalgesia, but the mechanisms involved in their hyperalgesic role are not completely understood. In this study, we hypothesized that P2X7 receptor activation induces mechanical hyperalgesia via the inflammatory mediators bradykinin, sympathomimetic amines, prostaglandin E2 (PGE2), and pro-inflammatory cytokines and via neutrophil migration in rats. We found that 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate triethylammonium salt (BzATP), the most potent P2X7 receptor agonist available, induced a dose-dependent mechanical hyperalgesia that was blocked by the P2X7 receptor-selective antagonist A-438079 but unaffected by the P2X1,3,2/3 receptor antagonist TNP-ATP. These findings confirm that, although BzATP also acts at both P2X1 and P2X3 receptors, BzATP-induced hyperalgesia was mediated only by P2X7 receptor activation. Co-administration of selective antagonists of bradykinin B1 (Des-Arg(8)-Leu(9)-BK (DALBK)) or B2 receptors (bradyzide), β1 (atenolol) or β2 adrenoceptors (ICI 118,551), or local pre-treatment with the cyclooxygenase inhibitor indomethacin or the nonspecific selectin inhibitor fucoidan each significantly reduced BzATP-induced mechanical hyperalgesia in the rat hind paw. BzATP also induced the release of the pro-inflammatory cytokines tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6 and cytokine-induced neutrophil chemoattractant-1 (CINC-1), an effect that was significantly reduced by A-438079. Co-administration of DALBK or bradyzide with BzATP significantly reduced BzATP-induced IL-1β and CINC-1 release. These results indicate that peripheral P2X7 receptor activation induces mechanical hyperalgesia via inflammatory mediators, especially bradykinin, which may contribute to pro-inflammatory cytokine release. These pro-inflammatory cytokines in turn may mediate the contributions of PGE2, sympathomimetic amines and neutrophil migration to the mechanical hyperalgesia induced by local P2X7 receptor activation.
Resumo:
The aim of this study was to evaluate the peripheral effect of 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) in albumin-induced arthritis in temporomandibular joint (TMJ) of rats. Antigen-induced arthritis (AIA) was generated in rats with methylated bovine serum albumin (mBSA) diluted in complete Freund׳s adjuvant. Pretreatment with an intra-articular injection of 15d-PGJ2 (100 ng/TMJ) before mBSA intra-articular injection (10 µg/TMJ) (challenge) in immunized rats significantly reduced the albumin-induced arthritis inflammation. The results demonstrated that 15d-PGJ2 was able to inhibit plasma extravasation, leukocyte migration and the release of inflammatory cytokines IL-6, IL-12, IL-18 and the chemokine CINC-1 in the TMJ tissues. In addition, 15d-PGJ2 was able to increase the expression of the anti-adhesive molecule CD55 and the anti-inflammatory cytokine IL-10. Taken together, it is possible to suggest that 15d-PGJ2 inhibit leukocyte infiltration and subsequently inflammatory process, through a shift in the balance of the pro- and anti-adhesive properties. Thus, 15d-PGJ2 might be used as a potential anti-inflammatory drug to treat arthritis-induced inflammation of the temporomandibular joint.
Resumo:
Taurine is a sulfur-containing amino acid that exerts protective effects on vascular function and structure in several models of cardiovascular diseases through its antioxidant and anti-inflammatory properties. Early protein malnutrition reprograms the cardiovascular system and is linked to hypertension in adulthood. This study assessed the effects of taurine supplementation in vascular alterations induced by protein restriction in post-weaning rats. Weaned male Wistar rats were fed normal- (12%, NP) or low-protein (6%, LP) diets for 90 days. Half of the NP and LP rats concomitantly received 2.5% taurine supplementation in the drinking water (NPT and LPT, respectively). LP rats showed elevated systolic, diastolic and mean arterial blood pressure versus NP rats; taurine supplementation partially prevented this increase. There was a reduced relaxation response to acetylcholine in isolated thoracic aortic rings from the LP group that was reversed by superoxide dismutase (SOD) or apocynin incubation. Protein expression of p47phox NADPH oxidase subunit was enhanced, whereas extracellular (EC)-SOD and endothelial nitric oxide synthase phosphorylation at Ser 1177 (p-eNOS) were reduced in aortas from LP rats. Furthermore, ROS production was enhanced while acetylcholine-induced NO release was reduced in aortas from the LP group. Taurine supplementation improved the relaxation response to acetylcholine and eNOS-derived NO production, increased EC-SOD and p-eNOS protein expression, as well as reduced ROS generation and p47phox expression in the aortas from LPT rats. LP rats showed an increased aortic wall/lumen ratio and taurine prevented this remodeling through a reduction in wall media thickness. Our data indicate a protective role of taurine supplementation on the high blood pressure, endothelial dysfunction and vascular remodeling induced by post-weaning protein restriction. The beneficial vascular effect of taurine was associated with restoration of vascular redox homeostasis and improvement of NO bioavailability.
Resumo:
Resistant hypertension (RH) is a multifactorial disease, frequently associated with obesity and characterized by blood pressure above goal (140/90 mm Hg) despite the concurrent use of ≥3 antihypertensive drugs of different classes. The mechanisms of obesity-related hypertension include, among others, aldosterone excess and inflammatory adipokines, which have demonstrated a significant role in the pathogenesis of metabolic syndrome and RH. This review aims to summarize recent studies on the role of the adipokines leptin, resistin, and adiponectin in the pathophysiology of RH and target-organ damage associated with this condition. The deregulation of adipokine levels has been associated with clinical characteristics frequently recognized in RH such as diabetes, hyperactivity of sympathetic and renin-angiotensin-aldosterone systems, and vascular and renal damage. Strategies to regulate adipokines may be promising for the management of RH and some clinical implications must be considered when managing controlled and uncontrolled patients with RH.
Resumo:
Syngonanthus macrolepis, popularly known in Brazil as 'sempre-vivas', is a plant from the family Eriocaulaceae, it is found in the states of Minas Gerais and Bahia. The species contains a variety of constituents, including flavonoids with gastroprotective effect. In this work, a flavonoid-rich fraction (Sm-FRF) obtained from scapes of S. macrolepis was investigated for preventing gastric ulceration in mice and rats. The activity was evaluated in models of induced gastric ulcer (absolute ethanol, stress, non-steroidal anti-inflammatory drugs and pylorus ligation). The cytoprotective mechanisms of the Sm-FRF in relation to sulfhydryl (SH) groups, nitric oxide (NO) and antioxidant enzymes were also evaluated. The Sm-FRF (100 mg/kg, p.o.) significantly reduced gastric injury in all models, and did not alter gastric juice parameters after pylorus ligation. The results indicate significant gastroprotective activity for the Sm-FRF, which probably involves the participation of both SH groups and the antioxidant system. Both are integral parts of the gastrointestinal mucosa's cytoprotective mechanisms against aggressive factors.