991 resultados para INDUSTRIAL STATISTICS
Resumo:
Performance on visual working memory tasks decreases as more items need to be remembered. Over the past decade, a debate has unfolded between proponents of slot models and slotless models of this phenomenon (Ma, Husain, Bays (Nature Neuroscience 17, 347-356, 2014). Zhang and Luck (Nature 453, (7192), 233-235, 2008) and Anderson, Vogel, and Awh (Attention, Perception, Psychophys 74, (5), 891-910, 2011) noticed that as more items need to be remembered, "memory noise" seems to first increase and then reach a "stable plateau." They argued that three summary statistics characterizing this plateau are consistent with slot models, but not with slotless models. Here, we assess the validity of their methods. We generated synthetic data both from a leading slot model and from a recent slotless model and quantified model evidence using log Bayes factors. We found that the summary statistics provided at most 0.15 % of the expected model evidence in the raw data. In a model recovery analysis, a total of more than a million trials were required to achieve 99 % correct recovery when models were compared on the basis of summary statistics, whereas fewer than 1,000 trials were sufficient when raw data were used. Therefore, at realistic numbers of trials, plateau-related summary statistics are highly unreliable for model comparison. Applying the same analyses to subject data from Anderson et al. (Attention, Perception, Psychophys 74, (5), 891-910, 2011), we found that the evidence in the summary statistics was at most 0.12 % of the evidence in the raw data and far too weak to warrant any conclusions. The evidence in the raw data, in fact, strongly favored the slotless model. These findings call into question claims about working memory that are based on summary statistics.
Resumo:
Purpose: The purpose of this paper is to investigate how supply and demand interact during industrial emergence. Design/methodology/approach: The paper builds on previous theorising about co-evolutionary dynamics, exploring the interaction between supply and demand in a study of the industrial emergence of the commercial inkjet cluster in Cambridge, UK. Data are collected through 13 interviews with professionals working in the industry. Findings: The paper shows that as new industries emerge, asynchronies between technology supply and market demand create opportunities for entrepreneurial activity. In attempting to match innovative technologies to particular applications, entrepreneurs adapt to the system conditions and shape the environment to their own advantage. Firms that successfully operate in emerging industries demonstrate the functionality of new technologies, reducing uncertainty and increasing customer receptiveness. Research limitations/implications: The research is geographically bounded to the Cambridge commercial inkjet cluster. Further studies could consider commercial inkjet from a global perspective or test the applicability of the findings in other industries. Practical implications: Technology-based firms are often innovating during periods of industrial emergence. The insights developed in this paper help such firms recognise the emerging context in which they operate and the challenges that need to overcome. Originality/value: As an in depth study of a single industry, this research responds to calls for studies into industrial emergence, providing insights into how supply and demand interact during this phase of the industry lifecycle. © Emerald Group Publishing Limited.
Resumo:
A mesoscopic Coulomb blockade system with two transport channels is studied in terms of full counting statistics. It is found that the shot noise and skewness are crucially affected by the quantum mechanical interference. In particular, the super-Poisson behavior can be induced as a consequence of constructive interference, and can be understood by the formation of effective fast-and-slow transport channels. Dephasing and finite temperature effects are carried out together with physical interpretations.