986 resultados para Hypertrophy, left ventricular
Resumo:
Abstract Background: Heart failure is accompanied by abnormalities in ventricular-vascular interaction due to increased myocardial and arterial stiffness. Galectin-3 is a recently discovered biomarker that plays an important role in myocardial and vascular fibrosis and heart failure progression. Objectives: The aim of this study was to determine whether galectin-3 is correlated with arterial stiffening markers and impaired ventricular-arterial coupling in decompensated heart failure patients. Methods: A total of 79 inpatients with acute decompensated heart failure were evaluated. Serum galectin-3 was determined at baseline, and during admission, transthoracic echocardiography and measurements of vascular indices by Doppler ultrasonography were performed. Results: Elevated pulse wave velocity and low arterial carotid distensibility are associated with heart failure in patients with preserved ejection fraction (p = 0.04, p = 0.009). Pulse wave velocity, carotid distensibility and Young’s modulus did not correlate with serum galectin-3 levels. Conversely, raised galectin-3 levels correlated with an increased ventricular-arterial coupling ratio (Ea/Elv) p = 0.047, OR = 1.9, 95% CI (1.0‑3.6). Increased galectin-3 levels were associated with lower rates of left ventricular pressure rise in early systole (dp/dt) (p=0.018) and raised pulmonary artery pressure (p = 0.046). High galectin-3 levels (p = 0.038, HR = 3.07) and arterial pulmonary pressure (p = 0.007, HR = 1.06) were found to be independent risk factors for all-cause mortality and readmissions. Conclusions: This study showed no significant correlation between serum galectin-3 levels and arterial stiffening markers. Instead, high galectin-3 levels predicted impaired ventricular-arterial coupling. Galectin-3 may be predictive of raised pulmonary artery pressures. Elevated galectin-3 levels correlate with severe systolic dysfunction and together with pulmonary hypertension are independent markers of outcome.
Resumo:
Abstract Background: Pulmonary hypertension is associated with poor prognosis in heart failure. However, non-invasive diagnosis is still challenging in clinical practice. Objective: We sought to assess the prognostic utility of non-invasive estimation of pulmonary vascular resistances (PVR) by cardiovascular magnetic resonance to predict adverse cardiovascular outcomes in heart failure with reduced ejection fraction (HFrEF). Methods: Prospective registry of patients with left ventricular ejection fraction (LVEF) < 40% and recently admitted for decompensated heart failure during three years. PVRwere calculated based on right ventricular ejection fraction and average velocity of the pulmonary artery estimated during cardiac magnetic resonance. Readmission for heart failure and all-cause mortality were considered as adverse events at follow-up. Results: 105 patients (average LVEF 26.0 ±7.7%, ischemic etiology 43%) were included. Patients with adverse events at long-term follow-up had higher values of PVR (6.93 ± 1.9 vs. 4.6 ± 1.7estimated Wood Units (eWu), p < 0.001). In multivariate Cox regression analysis, PVR ≥ 5 eWu(cutoff value according to ROC curve) was independently associated with increased risk of adverse events at 9 months follow-up (HR2.98; 95% CI 1.12-7.88; p < 0.03). Conclusions: In patients with HFrEF, the presence of PVR ≥ 5.0 Wu is associated with significantly worse clinical outcome at follow-up. Non-invasive estimation of PVR by cardiac magnetic resonance might be useful for risk stratification in HFrEF, irrespective of etiology, presence of late gadolinium enhancement or LVEF.
Resumo:
Abstract Background: Heart disease in pregnancy is the leading cause of non- obstetric maternal death. Few Brazilian studies have assessed the impact of heart disease during pregnancy. Objective: To determine the risk factors associated with cardiovascular and neonatal complications. Methods: We evaluated 132 pregnant women with heart disease at a High-Risk Pregnancy outpatient clinic, from January 2005 to July 2010. Variables that could influence the maternal-fetal outcome were selected: age, parity, smoking, etiology and severity of the disease, previous cardiac complications, cyanosis, New York Heart Association (NYHA) functional class > II, left ventricular dysfunction/obstruction, arrhythmia, drug treatment change, time of prenatal care beginning and number of prenatal visits. The maternal-fetal risk index, Cardiac Disease in Pregnancy (CARPREG), was retrospectively calculated at the beginning of prenatal care, and patients were stratified in its three risk categories. Results: Rheumatic heart disease was the most prevalent (62.12%). The most frequent complications were heart failure (11.36%) and arrhythmias (6.82%). Factors associated with cardiovascular complications on multivariate analysis were: drug treatment change (p = 0.009), previous cardiac complications (p = 0.013) and NYHA class III on the first prenatal visit (p = 0.041). The cardiovascular complication rates were 15.22% in CARPREG 0, 16.42% in CARPREG 1, and 42.11% in CARPREG > 1, differing from those estimated by the original index: 5%, 27% and 75%, respectively. This sample had 26.36% of prematurity. Conclusion: The cardiovascular complication risk factors in this population were drug treatment change, previous cardiac complications and NYHA class III at the beginning of prenatal care. The CARPREG index used in this sample composed mainly of patients with rheumatic heart disease overestimated the number of events in pregnant women classified as CARPREG 1 and > 1, and underestimated it in low-risk patients (CARPREG 0).
Resumo:
Abstract Background: Numerous studies show the benefits of exercise training after myocardial infarction (MI). Nevertheless, the effects on function and remodeling are still controversial. Objectives: To evaluate, in patients after (MI), the effects of aerobic exercise of moderate intensity on ventricular remodeling by cardiac magnetic resonance imaging (CMR). Methods: 26 male patients, 52.9 ± 7.9 years, after a first MI, were assigned to groups: trained group (TG), 18; and control group (CG), 8. The TG performed supervised aerobic exercise on treadmill twice a week, and unsupervised sessions on 2 additional days per week, for at least 3 months. Laboratory tests, anthropometric measurements, resting heart rate (HR), exercise test, and CMR were conducted at baseline and follow-up. Results: The TG showed a 10.8% reduction in fasting blood glucose (p = 0.01), and a 7.3-bpm reduction in resting HR in both sitting and supine positions (p < 0.0001). There was an increase in oxygen uptake only in the TG (35.4 ± 8.1 to 49.1 ± 9.6 mL/kg/min, p < 0.0001). There was a statistically significant decrease in the TG left ventricular mass (LVmass) (128.7 ± 38.9 to 117.2 ± 27.2 g, p = 0.0032). There were no statistically significant changes in the values of left ventricular end-diastolic volume (LVEDV) and ejection fraction in the groups. The LVmass/EDV ratio demonstrated a statistically significant positive remodeling in the TG (p = 0.015). Conclusions: Aerobic exercise of moderate intensity improved physical capacity and other cardiovascular variables. A positive remodeling was identified in the TG, where a left ventricular diastolic dimension increase was associated with LVmass reduction.
Resumo:
Abstract A literature overview of angiographic studies has shown that the prevalence of significant coronary disease in patients with aortic stenosis (AS) varies from 20 to 60%. Early necropsy studies suggested that patients with AS had a lower than expected incidence of coronary artery disease (CAD), originating the concept of a protective effect of AS on the coronary arteries. The myth of AS protection against CAD would be better explained as endothelium-myocardial interaction (crosstalk) protection triggered by left ventricular overload. Therefore, the cGMP/NO pathway induced by the AS overload pressure would explain the low incidence of CAD, which is compatible with the amazing natural long-term evolution of this cardiac valve disease.
Resumo:
Abstract Background: Isolated cleft mitral valve (ICMV) may occur alone or in association with other congenital heart lesions. The aim of this study was to describe the profile of cardiac lesions associated with ICMV and their potential impact on therapeutic management. Methods: We conducted a descriptive study with data retrieved from the Congenital Heart Disease (CHD) single-center registry of our institution, including patients with ICMV registered between December 2008 and November 2014. Results: Among 2177 patients retrieved from the CHD registry, 22 (1%) had ICMV. Median age at diagnosis was 5 years (6 days to 36 years). Nine patients (40.9%) had Down syndrome. Seventeen patients (77.3%) had associated lesions, including 11 (64.7%) with accessory chordae in the left ventricular outflow tract (LVOT) with no obstruction, 15 (88.2%) had ventricular septal defect (VSD), three had secundum atrial septal defect, and four had patent ductus arteriosus. Thirteen patients (59.1%) required surgical repair. The decision to proceed with surgery was mainly based on the severity of the associated lesion in eight patients (61.5%) and on the severity of the mitral regurgitation in four patients (30.8%). In one patient, surgery was decided based on the severity of both the associated lesion and mitral regurgitation. Conclusion: Our study shows that ICMV is rare and strongly associated with Down syndrome. The most common associated cardiac abnormalities were VSD and accessory chordae in the LVOT. We conclude that cardiac lesions associated with ICMV are of major interest, since in this study patients with cardiac lesions were diagnosed earlier. The decision to operate on these patients must take into account the severity of both mitral regurgitation and associated cardiac lesions.
Resumo:
Abstract Background: Idiopathic dilated cardiomyopathy (IDCM), most common cardiac cause of pediatric deaths, mortality descriptor: a low left ventricular ejection fraction (LVEF) and low functional capacity (FC). FC is never self reported by children. Objective: The aims of this study were (i) To evaluate whether functional classifications according to the children, parents and medical staff were associated. (iv) To evaluate whether there was correlation between VO2 max and Weber's classification. Method: Prepubertal children with IDCM and HF (by previous IDCM and preserved LVEF) were selected, evaluated and compared. All children were assessed by testing, CPET and functional class classification. Results: Chi-square test showed association between a CFm and CFp (1, n = 31) = 20.6; p = 0.002. There was no significant association between CFp and CFc (1, n = 31) = 6.7; p = 0.4. CFm and CFc were not associated as well (1, n = 31) = 1.7; p = 0.8. Weber's classification was associated to CFm (1, n = 19) = 11.8; p = 0.003, to CFp (1, n = 19) = 20.4; p = 0.0001and CFc (1, n = 19) = 6.4; p = 0.04). Conclusion: Drawing were helpful for children's self NYHA classification, which were associated to Weber's stratification.
Resumo:
Abstract Background: Transcatheter aortic valve implantation has become an option for high-surgical-risk patients with aortic valve disease. Objective: To evaluate the in-hospital and one-year follow-up outcomes of transcatheter aortic valve implantation. Methods: Prospective cohort study of transcatheter aortic valve implantation cases from July 2009 to February 2015. Analysis of clinical and procedural variables, correlating them with in-hospital and one-year mortality. Results: A total of 136 patients with a mean age of 83 years (80-87) underwent heart valve implantation; of these, 49% were women, 131 (96.3%) had aortic stenosis, one (0.7%) had aortic regurgitation and four (2.9%) had prosthetic valve dysfunction. NYHA functional class was III or IV in 129 cases (94.8%). The baseline orifice area was 0.67 ± 0.17 cm2 and the mean left ventricular-aortic pressure gradient was 47.3±18.2 mmHg, with an STS score of 9.3% (4.8%-22.3%). The prostheses implanted were self-expanding in 97% of cases. Perioperative mortality was 1.5%; 30-day mortality, 5.9%; in-hospital mortality, 8.1%; and one-year mortality, 15.5%. Blood transfusion (relative risk of 54; p = 0.0003) and pulmonary arterial hypertension (relative risk of 5.3; p = 0.036) were predictive of in-hospital mortality. Peak C-reactive protein (relative risk of 1.8; p = 0.013) and blood transfusion (relative risk of 8.3; p = 0.0009) were predictive of 1-year mortality. At 30 days, 97% of patients were in NYHA functional class I/II; at one year, this figure reached 96%. Conclusion: Transcatheter aortic valve implantation was performed with a high success rate and low mortality. Blood transfusion was associated with higher in-hospital and one-year mortality. Peak C-reactive protein was associated with one-year mortality.
Resumo:
The PulseCath iVAC 3L? left ventricular assist device is an option to treat transitory left heart failure or dysfunction post-cardiac surgery. Assisted blood flow should reach up to 3 l/min. In the present in vitro model exact pump flow, depending on various frequencies and afterload was examined. Optimal flow was achieved with inflation/deflation frequencies of about 70-80/min. The maximal flow rate was achieved at about 2.5 l/min with a minimal afterload of 22 mmHg. Handling of the device was easy due to the connection to a standard intra-aortic balloon pump console. With increasing afterload (up to a simulated mean systemic pressure of 66 mmHg) flow rate and cardiac support are in some extent limited.
Resumo:
AIMS: Bicuspid aortic valve (BAV) causes complex flow patterns in the ascending aorta (AAo), which may compromise the accuracy of flow measurement by phase-contrast magnetic resonance (PC-MR). Therefore, we aimed to assess and compare the accuracy of forward flow measurement in the AAo, where complex flow is more dominant in BAV patients, with flow quantification in the left ventricular outflow tract (LVOT) and the aortic valve orifice (AV), where complex flow is less important, in BAV patients and controls. METHODS AND RESULTS: Flow was measured by PC-MR in 22 BAV patients and 20 controls at the following positions: (i) LVOT, (ii) AV, and (iii) AAo, and compared with the left ventricular stroke volume (LVSV). The correlation between the LVSV and the forward flow in the LVOT, the AV, and the AAo was good in BAV patients (r = 0.97/0.96/0.93; P < 0.01) and controls (r = 0.96/0.93/0.93; P < 0.01). However, in relation with the LVSV, the forward flow in the AAo was mildly underestimated in controls and much more in BAV patients [median (inter-quartile range): 9% (4%/15%) vs. 22% (8%/30%); P < 0.01]. This was not the case in the LVOT and the AV. The severity of flow underestimation in the AAo was associated with flow eccentricity. CONCLUSION: Flow measurement in the AAo leads to an underestimation of the forward flow in BAV patients. Measurement in the LVOT or the AV, where complex flow is less prominent, is an alternative means for quantifying the systolic forward flow in BAV patients.
Resumo:
Purpose: Diabetic myocardium is particularly vulnerable to develop heart failure in response to chronic stress conditions including hypertension or myocardial infarction. We have recently observed that angiotensin II (Ang II)-mediated downregulation of the fatty acid oxidation pathway favors occurrence of heart failure by myocardial accumulation of lipids (lipotoxicity). Because diabetic heart is exposed to high levels of circulating fatty acid, we determined whether insulin resistance favors development of heart failure in mice with Ang II-mediated myocardial remodeling.Methods: To study the combined effect of diabetes and Ang II-induced heart remodeling, we generated leptin-deficient/insulin resistant (Lepob/ob) mice with cardiac targeted overexpression of angiotensinogen (TGAOGN). Left ventricular (LV) failure was indicated by pulmonary congestion (lung weight/tibial length>+2SD of wild-type mice). Myocardial metabolism and function were assessed during in vitro isolated working heart perfusion.Results: Forty-eight percent of TGAOGN mice without insulin resistance exhibited pulmonary congestion at the age of 6 months associated with increased myocardial BNP expression (+375% compared with WT) and reduced LV power (developed pressure x cardiac output; -15%). The proportion of mice presenting heart failure was markedly increased to 71% in TGAOGN mice with insulin resistance (TGAOGN/Lepob/ob). TGAOGN/Lepob/ob mice with heart failure exhibited further increase of BNP compared with failing non-diabetic TGAOGN mice (+146%) and further reduction of cardiac power (-59%). Mice with insulin resistance alone (Lepob/ob) did not exhibit signs of heart failure or LV dysfunction. Myocardial fatty acid oxidation measured during in vitro perfusion was markedly increased in non-failing hearts from Lepob/ob mice (+380% compared with WT) and glucose oxidation decreased (-72%). In contrast, fatty acid and glucose oxidation did not differ from Lepob/ob mice in hearts from TGAOGN/Lepob/ob mice without heart failure. However, both fatty acid and glucose oxidation were markedly decreased (-47% and -48%, respectively, compared with WT/Lepob/+) in failing hearts from TGAOGN/Lepob/ob mice. Reduction of fatty acid oxidation was associated with marked reduction of protein expression of a number of regulatory enzymes implied in fatty acid oxidation.Conclusions: Insulin resistance favors the progression to heart failure during chronic exposure of the myocardium to Ang II. Our results are compatible with a role of Ang II-mediated downregulation of fatty acid oxidation, potentially promoting lipotoxicity.
Resumo:
AIMS: Experimental autoimmune myocarditis (EAM) model mirrors important mechanisms of inflammatory dilated cardiomyopathy (iDCM). In EAM, inflammatory CD133(+) progenitors are a major cellular source of cardiac myofibroblasts in the post-inflammatory myocardium. We hypothesized that exogenous delivery of macrophage-colony-stimulating factor (M-CSF) can stimulate macrophage lineage differentiation of inflammatory progenitors and, therefore, prevent their naturally occurring myofibroblast fate in EAM. METHODS AND RESULTS: EAM was induced in wild-type (BALB/c) and nitric oxide synthase 2-deficient (Nos2(-/-)) mice and CD133(+) progenitors were isolated from inflamed hearts. In vitro, M-CSF converted inflammatory CD133(+) progenitors into nitric oxide-producing F4/80(+) macrophages and prevented transforming growth factor-β-mediated myofibroblast differentiation. Importantly, only a subset of heart-infiltrating CD133(+) progenitors expresses macrophage-specific antigen F4/80 in EAM. These CD133(+)/F4/80(hi) cells show impaired myofibrogenic potential compared with CD133(+)/F4/80(-) cells. M-CSF treatment of wild-type mice with EAM at the peak of disease markedly increased CD133(+)/F4/80(hi) cells in the myocardium, and CD133(+) progenitors isolated from M-CSF-treated mice failed to differentiate into myofibroblasts. In contrast, M-CSF was not effective in converting CD133(+) progenitors from inflamed hearts of Nos2(-/-) mice into macrophages, and M-CSF treatment did not result in increased CD133(+)/F4/80(hi) cell population in hearts of Nos2(-/-) mice. Accordingly, M-CSF prevented post-inflammatory fibrosis and left ventricular dysfunction in wild-type but not in Nos2(-/-) mice. CONCLUSION: Active and NOS2-dependent induction of macrophage lineage differentiation abrogates the myofibrogenic potential of heart-infiltrating CD133(+) progenitors. Modulating the in vivo differentiation fate of specific progenitors might become a novel approach for the treatment of inflammatory heart diseases.
Resumo:
BACKGROUND: Chronic mountain sickness (CMS) is a major public health problem in mountainous regions of the world. In its more advanced stages, exercise intolerance is often found, but the underlying mechanism is not known. Recent evidence indicates that exercise-induced pulmonary hypertension is markedly exaggerated in CMS. We speculated that this problem may cause pulmonary fluid accumulation and aggravate hypoxemia during exercise. METHODS: We assessed extravascular lung water (chest ultrasonography), pulmonary artery pressure, and left ventricular function in 15 patients with CMS and 20 control subjects at rest and during exercise at 3,600 m. RESULTS: Exercise at high altitude rapidly induced pulmonary interstitial fluid accumulation in all patients but one (14 of 15) with CMS and further aggravated the preexisting hypoxemia. In contrast, in healthy high-altitude dwellers exercise did not induce fluid accumulation in the majority of subjects (16 of 20) (P = .002 vs CMS) and did not alter arterial oxygenation. Exercise-induced pulmonary interstitial fluid accumulation and hypoxemia in patients with CMS was accompanied by a more than two times larger increase of pulmonary artery pressure than in control subjects (P < .001), but no evidence of left ventricular dysfunction. Oxygen inhalation markedly attenuated the exercise-induced pulmonary hypertension (P < .01) and interstitial fluid accumulation (P < .05) in patients with CMS but had no detectable effects in control subjects. CONCLUSIONS: To our knowledge, these findings provide the first direct evidence that exercise induces rapid interstitial lung fluid accumulation and hypoxemia in patients with CMS that appear to be related to exaggerated pulmonary hypertension. We suggest that this problem contributes to exercise intolerance in patients with CMS. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT01182792; URL: www.clinicaltrials.gov.
Resumo:
Rationale: Experimental autoimmune myocarditis (EAM) mirrors important pathogenic aspects of inflammatory cardiomyopathy, a common cause of heart failure. In EAM, TGF-β-dependent conversion of heart-infiltrating prominin-1+ progenitors into myofibroblasts is critical for development of fibrosis and the end-stage heart failure phenotype. Therapeutic strategies modulating the in vivo fate of prominin-1+ progenitors might therefore prevent TGF-β-mediated cardiac fibrosis and pathological remodelling. Methods and Results: EAM was induced in BALB/c mice using alpha-myosin heavy chain (aMyHC) peptide/complete Freund's adjuvant (CFA) immunization. Prominin-1+ cells were isolated from the inflamed hearts at day 21 after immunization, expanded and treated with Macrophage Colony-Stimulating Factor (M-CSF) or Transforming Growth Factor-beta (TGF-β). Herein, we demonstrated that M-CSF turns, ex vivo and in the EAM, heart-infiltrating prominin-1+ progenitors into immunosuppressive F4/80/CD11b/CD16/32/NOS2-expressing, nitric oxide producing and E.coli bacteria phygocyting macrophages, and protect further TGF-β-stimulated differentiation into pathogenic myofibroblasts. Systemic M-CSF treatment during myocarditis completely prevented post-inflammatory fibrosis, T cell relapse and left ventricular dysfunction. Mechanistically, M-CSF-induced macrophage differentiation from prominin-1+ progenitors critically required nitric oxide synthase 2. Accordingly, M-CSF treatment failed to reduce myocardial fibrosis development in Nos2-/- mice. Conclusions: Altering the in vivo fate of inflammatory prominin-1 expressing progenitors from pro-fibrotic into the F4/80 expressing macrophage phenotype protects from myocarditis progression, cardiac fibrosis, and heart failure. These findings offer a modern therapeutic model and challenge former concepts, which attributed macrophages a detrimental role in inflammatory cardiomyopathy progression.
Resumo:
Cardiovascular magnetic resonance (CMR) is a rapidly emerging non-invasive imaging technique free of X-Ray and offers higher spatial resolution than alternative forms of cardiac imaging for the assessment of left ventricular (LV) anatomy, function, and viability due to the unique capability of myocardial tissue characterization after gadolinium-chelates contrast administration. This imaging technique has clinical utility over a broad spectrum of heart diseases: ranging from ischaemic to non ischaemic aetiologies. Cardiomyopathies (CMP) are a heterogeneous group of diseases of the myocardium associated with architectural abnormalities and mechanical dysfunction. CMR can help excluding coronary artery disease and can provide positive diagnostic features for several CMP resulted in better diagnosis and management, Leading to improvements in mortality.