995 resultados para Hydrothermal stability
Resumo:
This paper describes the development of a new analysis to predict the onset of flow instability for an axial compressor operating in a circumferentially distorted inlet flow. A relatively simple model is used to examine the influence of various distortions in setting this instability point. It is found that the model reproduces known experimental trends for the loss of stability margin with increasing distortion amplitude and with changes in reduced frequency.
Resumo:
This paper describes measurements of the performance of a research stage operating in isolation and as part of a multistage compressor. It is shown that the stall point and the stalled performance of the stage are properties of the system in which it operates rather than a property of the stage itself. The consequences of this for the estimation of the stall point for compressors and compression systems are discussed. The support that the measurements give to assumptions made by mathematical models which use the concept of an 'underlying axisymmetric' characteristic, are highlighted.
Resumo:
In multi-spool engines, rotating stall in an upstream compressor will impose a rotating distortion on the downstream compressor, thereby affecting its stability margin. In this paper experiments are described in which this effect was simulated by a rotating screen upstream of several multistage low-speed compressors. The measurements are complemented by, and compared with, a theoretical model of multistage compressor response to speed and direction of rotation of an inlet distortion. For co-rotating distortions (i.e., distortions rotating in the same direction as rotor rotation), experiments show that the compressors exhibited significant loss in stability margin and that they could be divided into two groups according to their response. The first group exhibited a single peak in stall margin degradation when the distortion speed corresponded to roughly 50% of rotor speed. The second group showed two peaks in stall margin degradation corresponding to distortion speeds of approximately 25-35% and 70-75% of rotor speed. These new results demonstrate that multistage compressors can have more than a single resonant response. Detailed measurements suggest that the two types of behavior are linked to differences between the stall inception processes observed for the two groups of compressors and that a direct connection thus exists between the observed forced response and the unsteady flow phenomena at stall onset. For counter-rotational distortions, all the compressors tested showed minimal loss of stability margin. The results imply that counter-rotation of the fan and core compressor, or LP and HP compressors, could be a worthwhile design choice. Calculations based on the two-dimensional theoretical model show excellent agreement for the compressors which had a single peak for stall margin degradation. We take this first-of-a-kind comparison as showing that the model, though simplified, captures the essential fluid dynamic features of the phenomena. Agreement is not good for compressors which had two peaks in the curve of stall margin shift versus distortion rotation speed. The discrepancy is attributed to the three-dimensional and short length scale nature of the stall inception process in these machines; this includes phenomena that have not yet been addressed in any model.
Resumo:
Three dry pelleted feeds incorporating fish meal, fish silage or a mixture of colocasia leaf powder and fish meal were formulated for use in carp culture. The diets formulated were tested for water stability and also for changes in their quality parameters over storage of three months. The different pellets showed satisfactory water stability. The variations recorded in the proximate composition during the period of storage did not bring about any drastic change in the overall keeping quality of the feeds. Therefore, the three formulated feeds are considered suitable for use in the culture of carps.
Resumo:
The global stability of confined uniform density wakes is studied numerically, using two-dimensional linear global modes and nonlinear direct numerical simulations. The wake inflow velocity is varied between different amounts of co-flow (base bleed). In accordance with previous studies, we find that the frequencies of both the most unstable linear and the saturated nonlinear global mode increase with confinement. For wake Reynolds number Re = 100 we find the confinement to be stabilising, decreasing the growth rate of the linear and the saturation amplitude of the nonlinear modes. The dampening effect is connected to the streamwise development of the base flow, and decreases for more parallel flows at higher Re. The linear analysis reveals that the critical wake velocities are almost identical for unconfined and confined wakes at Re ≈ 400. Further, the results are compared with literature data for an inviscid parallel wake. The confined wake is found to be more stable than its inviscid counterpart, whereas the unconfined wake is more unstable than the inviscid wake. The main reason for both is the base flow development. A detailed comparison of the linear and nonlinear results reveals that the most unstable linear global mode gives in all cases an excellent prediction of the initial nonlinear behaviour and therefore the stability boundary. However, the nonlinear saturated state is different, mainly for higher Re. For Re = 100, the saturated frequency differs less than 5% from the linear frequency, and trends regarding confinement observed in the linear analysis are confirmed.
Resumo:
Four dry pelleted feeds containing 20%, 30%, 40% and 45% protein were formulated incorporating casein as the main source of protein for use in carp nutrition studies. The caloric content in all the feeds was maintained constant. The method of processing is described. The formulated diets were tested for water stability. This test has revealed that the diet containing 20%, 30% and 40% protein had better stability than that containing 45% protein. This was due to the relatively higher fat content in the former three diets. However, all the feeds were sufficiently stable at the end of one hour in which time carps are known to utilise supplementary diets.
Resumo:
Humans are able to stabilize their movements in environments with unstable dynamics by selectively modifying arm impedance independently of force and torque. We further investigated adaptation to unstable dynamics to determine whether the CNS maintains a constant overall level of stability as the instability of the environmental dynamics is varied. Subjects performed reaching movements in unstable force fields of varying strength, generated by a robotic manipulator. Although the force fields disrupted the initial movements, subjects were able to adapt to the novel dynamics and learned to produce straight trajectories. After adaptation, the endpoint stiffness of the arm was measured at the midpoint of the movement. The stiffness had been selectively modified in the direction of the instability. The stiffness in the stable direction was relatively unchanged from that measured during movements in a null force field prior to exposure to the unstable force field. This impedance modification was achieved without changes in force and torque. The overall stiffness of the arm and environment in the direction of instability was adapted to the force field strength such that it remained equivalent to that of the null force field. This suggests that the CNS attempts both to maintain a minimum level of stability and minimize energy expenditure.
Resumo:
Corn starch, gelatin, sago palm starch, agar, and bread flour were tested for their binding capacity in pelleted diets for Penaeus monodon . Agar was found to be good binder, but it costs too much, while bread flour was also good but as it's commonly used for human comsumption its use for animal feed should be minimized. The use of 20% bread flour, or a combination of 5% sago palm starch or corn starch with 15% bread flour is recommended, depending on the cost and availability. Basic composition of the formulated diet is tabulated, as is water stability of 2 and 4 mm diameter steamed pellets after 2, 6 and 18 h.
Resumo:
A study was conducted to determine the comparative effectiveness of purified, semipurified and crude starch of sago as binders for pelleted shrimp diets. The diet containing semipurified sago starch had the highest water stability (79.1%). The values were nearly the same for the pellets bound with purified and crude sago starch. Reasons for the low binding capacity of purified and crude sago could be that the gel of purified sago is weakened due to purification, and that of the crude sago is due to the spongy material present in the product. Thus, semipurified sago starch is a better source of binder and purified crude sago. From the economic viewpoint, the cost of purified sago is prohibitive for use as binder. Both semipurified and crude sago palm starch are acceptable. Composition of shrimp diets containing various sources of sago palm starch, and binder cost and water stability of shrimp diets containing various sources of sago palm starch tested at 3, 6 and 12 hours, are tabulated.