965 resultados para Hydrographic basins
Resumo:
Serial, cyclonic, mesoscale eddies arise just north of the Charleston Bump, a topographical rise on the continental slope and Blake Plateau, and characterize the U.S. outer shelf and upper slope in the region of the Charleston Gyre. This region was transected during the winters of 2000, 2001, and 2002, and hydrographic data and larval fishes were collected. The hydrodynamics of the cyclonic eddies of the Charleston Gyre shape the distribution of larval fishes by mixing larvae from the outer continental shelf and the Gulf Stream and entraining them into the eddy circulation at the peripheral margins, the wrap-around filaments. Over all years and transects (those that intercepted eddies and those that did not), chlorophyll a concentrations, zooplankton displacement volumes, and larval fish concentrations were positively correlated. Chlorophyll a concentrations were highest in filaments that wrapped around eddies, and zooplankton displacement volumes were highest in the continental shelf–Gulf Stream–frontal mix. Overall, the concentration of all larval fishes declined from inshore to offshore with highest concentrations occurring over the outer shelf. Collections produced larvae from 91 fish families representing continental shelf and oceanic species. The larvae of shelf-spawned fishes—Atlantic Menhaden Brevoortia tyrannus, Round Herring Etrumeus teres, Spot Leiostomus xanthurus, and Atlantic Croaker Micropogonias undulatus—were most concentrated over the outer shelf and in the continental shelf–Gulf Stream–frontal mix. The larvae of ocean-spawned fishes—lanternfishes, bristlemouths, and lightfishes—were more evenly dispersed in low concentrations across the outer shelf and upper slope, the highest typically in the Gulf Stream and Sargasso Sea, except for lightfishes that were highest in the continental shelf–Gulf Stream–frontal mix. Detrended correspondence analysis rendered groups of larval fishes that corresponded with a gradient between the continental shelf and Gulf Stream and Sargasso Sea. Eddies propagate northeastward with a residence time on the outer shelf and upper slope of ∼1 month, the same duration as the larval period of most fishes. The pelagic habitat afforded by eddies and fronts of the Charleston Gyre region can be exploited as nursery areas for feeding and growth of larval fishes within the southeastern Atlantic continental shelf ecosystem of the U.S. Eddies, and the nursery habitat they provide, translocate larvae northeastward.
Resumo:
Extensive plankton collections were taken during seven September cruises (1990–93) along the inner continental shelf of the northcentral Gulf of Mexico (GOM). Despite the high productivity and availability of food during these cruises, significant small-scale spatial variability was found in larval growth rates for both Atlantic bumper (Chloroscombrus chrysurus, Carangidae) and vermilion snapper (Rhomboplites aurorubens, Lutjanidae). The observed variability in larval growth rates was not correlated with changes in water temperature or associated with conspicuous hydrographic features and suggested the existence of less-recognizable regions where conditions for growth vary. Cruise estimates of mortality coefficients (Z) for larval Atlantic bumper (n=32,241 larvae from six cruises) and vermilion snapper (n= 2581 larvae from four cruises) ranged from 0.20 to 0.37 and 0.19 to 0.29, respectively. Even in a subtropical climate like the GOM, where larval-stage durations may be as short as two weeks, observed variability in growth rates, particularly when combined with small changes in mortality rates, can cause order-of-magnitude differences in cumulative larval survival. To what extent the observed differences in growth rates at small spatial scales are fine-scale “noise” that ultimately is smoothed by larger-scale processes is not known. Future research is needed to further characterize the small-scale variability in growth rates of larvae, particularly with regard to microzooplankton patchiness and the temporal and spatial pattern of potential predators. Small-scale spatial variability in larval growth rates may in fact be the norm, and understanding the implications of this subtle mosaic may help us to better evaluate our ability to partition the causes of recruitment variability.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): There is considerable seasonal-to-interannual variability in the runoff of major watersheds in the Sierra Nevada, Coastal, and Cascade ranges of California and southwestern Oregon. This variability is reflected in both the amount and timing of runoff. This study examines that variability using long historical streamflow records and seasonal mean temperature and precipitation. ... Precipitation is the only significant predictor for both amount and timing of runoff in the low elevation basins. As elevation increases, the models rely more and more on temperature to explain amount and timing of runoff.
Resumo:
A brief account is given of hydrographic observations made during a cruise conducted off Bombay, India, on the 26 May 1983. Vertical distribution charts are included for temperature, salinity and dissolved oxygen.
Resumo:
A productive fishing ground for rock perch (Epinephelus fasciatus) was located off Ratnagiri between 17 degree 00' to 17 degree 10' N latitude and 72 degree 20' to 72 degree 30' E longitude, around a depth of 96m during November, 1983. An average catch of 2 ton/hr. was recorded. Length frequency studies of E. fasciatus indicate the probability of a nursery ground consisting of three brood stocks. Hydrographic studies of the ground revealed that the bottom water was oxygen deficient below a strong thermocline extending from 15-75 m depth with the recorded bottom temperature amounting to 20.5 degree C.
Resumo:
The hydrographic conditions prevailing in an estuarine system along the southwest coast of India are described. The nature of destruction of timber in these backwaters has been examined in detail which revealed the existence of 8 species of shipworms, 2 species each of pholads and isopods. The shipworms are represented by Dicyathifer manni, Lyrodus pedicellatus, Teredo furcifera, T. clappi, Nausitora dunlopei, Bankia carinata, B. campanellata; the pholads by Martesia striata and M. (Purticoma) nairi; and the isopods by Sphaeroma terebrans and S. annandalei. The incidence and relative abundance of these pests are discussed in relation to the salinity profile of the estuary.
Resumo:
The southern part of the Sofala Bank (in Mozambique) was investigated. A net of closely spaced hydrographic stations were obtained and a current meter mooring consisting of two current meters and a bottom pressure recorder was deployed. High salinity shelf water was observed near shore with a maximum salinity above 36.6 ppt. Both average and tidal currents are discussed. The mean currents are steered by the continental slop and seem to be influenced by the wind. The tides have strong semidiurnal components, with a major axis of 53 cm/s perpendicular to the coast at 60m depth. The possibility that the tides may transport passive drifters with a diurnal vertical migration pattern up to a few kilometers a day is considered.
Resumo:
The primary objectives of this data summary are to display features of the distribution of hydrographic and chemical parameters in the Mozambique Channel in a form which will be useful for oceanographers, and to serve as a basis for the processing of more recent data obtained since 1977.
Resumo:
From 1977 to 1980, several research cruises were carried out in the coastal waters of Mozambique to collect oceanographic data. The distribution of hydrographic and bathythermograph stations is given. The water masses and circulation were mapped and wind data gathered.
Resumo:
The hydrographic structure of the northern Red Sea indicated that, the surface waters of temperature around 22°C, salinity of 40.1OO%o and dt = 28.1 might sink to depths between 400-500 m by convective overturn, contributing to the formation of the mid-deep Red Sea waters. Below the 500 db depth down to the bottom the water column is stable. The geostrophic circulation clearly indicated an inflow of water from the Red Sea towards NNW, along the main axis of the sea. Arriving at the northern edge of the sea, it sends a branch in the Gulf of Aqaba, turns to the west, and sends another branch to the Gulf of Suez, but its main mass reaches the African coast where it sets southward along this coast. A large cyclonic gyre centered near 27 deg 30'N and 34 deg l0'E is detected at the head of the Red Sea deep waters. The effect of the outflow of the bottom water of the Gulf of Suez on the formation of the deep water of the Red Sea is limited.
Resumo:
Hydrographic data collected from east coast of India during 1994 monsoon period revealed that these waters are highly characterized by upwelling especially in the coastal waters with more intensity in the southern part of the region. However, the near surface salinity stratification consequent to high fresh water inflow into the bay was absent in the present study. Oil sardines are directly influenced by hydrographic parameters such as salinity and temperature and stratification of these parameters are the major reasons for non-availability/migration of oil sardine from this region in the earlier years. Considering the recent topographical change in the east coast coupled with hydrological stability an attempt has been made in this paper to give reasonable justification to the reported bumper catches of oil sardines from 1994 on wards in the east coast of India.
Resumo:
In total 68 phytoplankton species were identified at the mouth of the Maheshkhali channel with the Bay of Bengal, among them 41 belong to Bacillariophyceae, 17 Dinophyceae, 7 Cyanophyceae and 3 to Chlorophyceae. The highest phytoplankton production was observed in November (578.0 x 105 cells/L) and the lowest in June (37.5 x 105 cells/L). Some hydrographic parameters e.g., surface water temperature, salinity and nutrients (N03-N and P04-P) were recorded and their relationship with the occurrence and abundance of phytoplankton population were also studied. Nutrient concentration was higher during the autumn months, when rain water provided the maximum outflow of rivers discharging into the channel. During the nutrient peak period, the total phytoplankton production was maximum. Bacillariophyceae was the dominant group of phytoplankton throughout the study period except in June and September, when Dinophyceae was dominant. Cyanophyceae was abundant in spring months when temperature began to rise.
Resumo:
The distribution and landings of important varieties of prawns off Paradeep coast, Orissa, in relation to the climatic and hydrographic conditions from 1970-1976 are presented. The prawn fishery as a whole, showed a quadrennial cycle along the coast. The post-monsoon migration of all varieties of prawns along the coast directly depends on the annual precipitation. Temperature gradient, fluctuations in salinity and southerly wind in the Bay of Bengal influence the migration of the different species of prawns.
Resumo:
In this paper, some results of analyzing the hydrographic characteristics of the seawater temperature and salinity are presented. The received results showed that: in dry season, the influence of the Cai river water has is limited in Cai river estuary with the approximate transferable distance from the river mouth to the open sea of about 1 km. The isohaline 32%o could be defined as the separate boundary of the Cai river water; In rainy season, due to the river water discharges are high, the influence of Cai river water could be transferred to the open sea and island areas. The immerge of the Cai river water in the open sea areas in rainy season has changed the vertical structure of salinity and temperature in the northern part of Nhatrang bay. In both seasons, the Cai river water have influenced in the surface water layers 0 - 2m and the water layers deeper than 2m are influenced by the sea waters with the salinity of higher than 32%o.
Resumo:
Zoea 2(Z SUB-2 ) Mysis 1 (M SUB-1 ) and Postlarva 1 (P SUB-1 ) of P. monodon artificially spawned in closed-system concrete hatchery tanks were bioassayed for their tolerance to the antibiotic furanace. The setup consisted of four 20-liter capacity plastic basins previously conditioned for 15 days with freshwater in full sunlight. During the experiment, each basin was filled with 5 liters of seawater to which was added filtered Chaetoceros and Brachionus to give densities of 5 . 0-7 . 5 x 10 SUP-4 cells/ml and 10-20 individuals/ml, respectively. The following are the properties of the water used throughout the experiments: salinity, 26-32%; pH, 7 . 3-8 . 4; temperature, 25-30 degree C; dissolved oxygen, 4 . 5-8 . 4 ppm; nitrite, 0 . 36-0 . 99 ppm; and ammonia, 0 . 10-0 . 30 ppm. To each basin were added 50 healthy larvae of specific stages of P. monodon. After an initial acclimation of one hour in the medium, preweighed amounts of the antibiotic were added and thoroughly dissolved. The concentrations tested were 1 . 0, 2 . 0 and 3 . 0 ppm. One basin always served as control. After 24 hours of exposure, the surviving population in each basin was counted. The survivors were then examined thoroughly under the microscope for unusual behavior and morphological defects brought about by the exposure. To minimize wide variations in the medium as a result of feeding and other manipulations, the systems were all prepared at 9:00 a.m. each time, and the feeds on two instances, one at 5:00 p.m. and another at 5:00 a.m. Fifteen trials conducted with Z SUB-2 showed survival ranges of 68% to 98% with a mean of 77 . 6% in the controls; 32% to 94% with a mean of 65 . 7% at 1 ppm, and 0% to 56% with a mean of 36 . 5% at 2 ppm. There were no survivors at 3 ppm. Interpolation from the survival-dose curve gave a 24-hr LC SUB-50 of approximately 1 . 6 ppm.