900 resultados para Hybrid method
Resumo:
This thesis addresses the process simulation and validation in Business Process Management. It proposes that the hybrid Multi Agent System (MAS) / 3D Virtual World approach is a valid method for better simulating the behaviour of human resources in business processes, supporting a wide range of rich visualization applications that can facilitate communication between business analysts and stakeholders. It is expected that the findings of this thesis may be fruitfully extended from BPM to other application domains, such as social simulation in video games and computer-based training animations.
Resumo:
A very simple leaf assay is described that rapidly and reliably identifies transgenic plants expressing the hygromycin resistance gene, hph or the phosphinothricin resistance gene, bar. Leaf tips were cut from plants propagated either in the glasshouse or in tissue culture and the cut surface embedded in solid medium containing the appropriate selective agent. Non-transgenic barley or rice leaf tips had noticeable symptoms of either bleaching or necrosis after three days on the medium and were completely bleached or necrotic after one week. Transgenic leaf tips remained green and healthy over this period. This gave unambiguous discrimination between transgenic and non-transgenic plants. The leaf assay was also effective for dicot plants tested (tobacco and peas).
Resumo:
Near-infrared spectroscopy (NIRS) calibrations were developed for the discrimination of Chinese hawthorn (Crataegus pinnatifida Bge. var. major) fruit from three geographical regions as well as for the estimation of the total sugar, total acid, total phenolic content, and total antioxidant activity. Principal component analysis (PCA) was used for the discrimination of the fruit on the basis of their geographical origin. Three pattern recognition methods, linear discriminant analysis, partial least-squares-discriminant analysis, and back-propagation artificial neural networks, were applied to classify and compare these samples. Furthermore, three multivariate calibration models based on the first derivative NIR spectroscopy, partial least-squares regression, back-propagation artificial neural networks, and least-squares-support vector machines, were constructed for quantitative analysis of the four analytes, total sugar, total acid, total phenolic content, and total antioxidant activity, and validated by prediction data sets.
Resumo:
Graphene–polymer nanocomposites have promising properties as new structural and functional materials. The remarkable mechanical property enhancement in these nanocomposites is generally attributed to exceptional mechanical property of graphene and possible load transfer between graphene and polymer matrix. However, the underlying strengthening and toughening mechanisms have not been well understood. In this work, the interfacial behavior of graphene-polyethylene (PE) was investigated using molecular dynamics (MD) method. The interfacial shear force (ISF) and interfacial shear stress (ISS) between graphene and PE matrix were evaluated, taking into account graphene size, the number of graphene layers and the structural defects in graphene. MD results show that the ISS at graphene-PE interface mainly distributes at each end of the graphene nanofiller within the range of 1 nm, and much larger than that at carbon nanotube (CNT)-PE interface. Moreover, it was found that the ISS at graphene-PE interface is sensitive to the layer number.
Resumo:
This paper considers an emerging planning practice that uses networked connections to interact with urban places and re-create enlivened cities. The paper presents “urban acupuncture” as a new planning approach that broadens communication and strategically targets interventions across the city. Defined as an approach, which, through the use of digital social networks and interactions, involves citizens and planners in place activations in order to stimulate and reinvigorate place, thus creating meaningful relationships between citizens and their urban settings. This paper uses the UR[BNE] Brisbane Festival 2012 as a qualitative case study of urban acupuncture, best defined as a hyper-localized healing treatment through place activation to enliven and recreate cities. It examines the challenges faced and opportunities embraced by a network of urban professionals. Their aim was to activate the underused urban spaces of central Brisbane through the festival's activities and events. The findings identify the key elements required to design public spaces using socially and technologically networked interactions.
Resumo:
Articular cartilage is the load-bearing tissue that consists of proteoglycan macromolecules entrapped between collagen fibrils in a three-dimensional architecture. To date, the drudgery of searching for mathematical models to represent the biomechanics of such a system continues without providing a fitting description of its functional response to load at micro-scale level. We believe that the major complication arose when cartilage was first envisaged as a multiphasic model with distinguishable components and that quantifying those and searching for the laws that govern their interaction is inadequate. To the thesis of this paper, cartilage as a bulk is as much continuum as is the response of its components to the external stimuli. For this reason, we framed the fundamental question as to what would be the mechano-structural functionality of such a system in the total absence of one of its key constituents-proteoglycans. To answer this, hydrated normal and proteoglycan depleted samples were tested under confined compression while finite element models were reproduced, for the first time, based on the structural microarchitecture of the cross-sectional profile of the matrices. These micro-porous in silico models served as virtual transducers to produce an internal noninvasive probing mechanism beyond experimental capabilities to render the matrices micromechanics and several others properties like permeability, orientation etc. The results demonstrated that load transfer was closely related to the microarchitecture of the hyperelastic models that represent solid skeleton stress and fluid response based on the state of the collagen network with and without the swollen proteoglycans. In other words, the stress gradient during deformation was a function of the structural pattern of the network and acted in concert with the position-dependent compositional state of the matrix. This reveals that the interaction between indistinguishable components in real cartilage is superimposed by its microarchitectural state which directly influences macromechanical behavior.
Resumo:
In a people-to-people matching systems, filtering is widely applied to find the most suitable matches. The results returned are either too many or only a few when the search is generic or specific respectively. The use of a sophisticated recommendation approach becomes necessary. Traditionally, the object of recommendation is the item which is inanimate. In online dating systems, reciprocal recommendation is required to suggest a partner only when the user and the recommended candidate both are satisfied. In this paper, an innovative reciprocal collaborative method is developed based on the idea of similarity and common neighbors, utilizing the information of relevance feedback and feature importance. Extensive experiments are carried out using data gathered from a real online dating service. Compared to benchmarking methods, our results show the proposed method can achieve noticeable better performance.
Resumo:
This study demonstrates a novel technique of preparing drug colloid probes to determine the adhesion force between the drug salbutamol sulphate (SS) and the surfaces of polymer microparticles to be used as carriers for the dispersion of drug particles from a dry powder inhaler (DPI) formulation. Initially model silica probes of approximately 4 μm size, similar to a drug particle used in DPI formulations, were coated with a saturated SS solution with the aid of capillary forces acting between the silica probe and the drug solution. The developed method of ensuring a smooth and uniform layer of SS on the silica probe was validated using X-Ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM). Using the same technique, silica microspheres preattached on the AFM cantilever were coated with SS. The adhesion forces between the silica probe and drug coated silica (drug probe) and polymer surfaces (hydrophilic and hydrophobic) were determined. Our experimental results showed that the technique for preparing the drug probe was robust and can be used to determine the adhesion force between hydrophilic/hydrophobic drug probe and carrier surfaces to gain a better understanding on drug carrier adhesion forces in DPI formulations.
Resumo:
Robust descriptor matching across varying lighting conditions is important for vision-based robotics. We present a novel strategy for quantifying the lighting variance of descriptors. The strategy works by utilising recovered low dimensional mappings from Isomap and our measure of the lighting variance of each of these mappings. The resultant metric allows different descriptors to be compared given a dataset and a set of keypoints. We demonstrate that the SIFT descriptor typically has lower lighting variance than other descriptors, although the result depends on semantic class and lighting conditions.
Resumo:
A novel method of matching stiffness and continuous variable damping of an ECAS (electronically controlled air suspension) based on LQG (linear quadratic Gaussian) control was proposed to simultaneously improve the road-friendliness and ride comfort of a two-axle school bus. Taking account of the suspension nonlinearities and target-height-dependent variation in suspension characteristics, a stiffness model of the ECAS mounted on the drive axle of the bus was developed based on thermodynamics and the key parameters were obtained through field tests. By determining the proper range of the target height for the ECAS of the fully-loaded bus based on the design requirements of vehicle body bounce frequency, the control algorithm of the target suspension height (i.e., stiffness) was derived according to driving speed and road roughness. Taking account of the nonlinearities of a continuous variable semi-active damper, the damping force was obtained through the subtraction of the air spring force from the optimum integrated suspension force, which was calculated based on LQG control. Finally, a GA (genetic algorithm)-based matching method between stepped variable damping and stiffness was employed as a benchmark to evaluate the effectiveness of the LQG-based matching method. Simulation results indicate that compared with the GA-based matching method, both dynamic tire force and vehicle body vertical acceleration responses are markedly reduced around the vehicle body bounce frequency employing the LQG-based matching method, with peak values of the dynamic tire force PSD (power spectral density) decreased by 73.6%, 60.8% and 71.9% in the three cases, and corresponding reduction are 71.3%, 59.4% and 68.2% for the vehicle body vertical acceleration. A strong robustness to variation of driving speed and road roughness is also observed for the LQG-based matching method.
Resumo:
Cognitive impairment and physical disability are common in Parkinson’s disease (PD). As a result diet can be difficult to measure. This study aimed to evaluate the use of a photographic dietary record (PhDR) in people with PD. During a 12-week nutrition intervention study, 19 individuals with PD kept 3-day PhDRs on three occasions using point-and-shoot digital cameras. Details on food items present in the PhDRs and those not photographed were collected retrospectively during an interview. Following the first use of the PhDR method, the photographer completed a questionnaire (n=18). In addition, the quality of the PhDRs was evaluated at each time point. The person with PD was the sole photographer in 56% of the cases, with the remainder by the carer or combination of person with PD and the carer. The camera was rated as easy to use by 89%, keeping a PhDR was considered acceptable by 94% and none would rather use a “pen and paper” method. Eighty-three percent felt confident to use the camera again to record intake. Of the photos captured (n=730), 89% were of adequate quality (items visible, in-focus), while only 21% could be used alone (without interview information) to assess intake. Over the study, 22% of eating/drinking occasions were not photographed. PhDRs were considered an easy and acceptable method to measure intake among individuals with PD and their carers. The majority of PhDRs were of adequate quality, however in order to quantify intake the interview was necessary to obtain sufficient detail and capture missing items.
Resumo:
Access to dietetic care is important in chronic disease management and innovative technologies assists in this purpose. Photographic dietary records (PhDR) using mobile phones or cameras are valid and convenient for patients. Innovations in providing dietary interventions via telephone and computer can also inform dietetic practice. Three studies are presented. A mobile phone method was validated by comparing energy intake (EI) to a weighed food record and a measure of energy expenditure (EE) obtained using the doubly labelled water technique in 10 adults with T2 diabetes. The level of agreement between mean (±sd) energy intake mobile phone (8.2±1.7 MJ) and weighed record (8.5±1.6 MJ) was high (p=0.392), however EI/EE for both methods gave similar levels of under-reporting (0.69 and 0.72). All subjects preferred using the mobile phone vs. weighed record. Nineteen individuals with Parkinsons disease kept 3-day PhDRs on three occasions using point-and-shoot digital cameras over a 12 week period. The camera was rated as easy to use by 89%, keeping a PhDR was considered acceptable by 94% and none would rather use a “pen and paper” method. Eighty-three percent felt confident to use the camera again to record intake. An interactive, automated telephone system designed to coach people with T2 diabetes to adopt and maintain diabetes self-care behaviours, including nutrition, showed trends for improvements in total fat, saturated fat and vegetable intake of the intervention group compared to control participants over 6 months. Innovative technologies are acceptable to patients with chronic conditions and can be incorporated into dietetic care.
Resumo:
Railway crew scheduling problem is the process of allocating train services to the crew duties based on the published train timetable while satisfying operational and contractual requirements. The problem is restricted by many constraints and it belongs to the class of NP-hard. In this paper, we develop a mathematical model for railway crew scheduling with the aim of minimising the number of crew duties by reducing idle transition times. Duties are generated by arranging scheduled trips over a set of duties and sequentially ordering the set of trips within each of duties. The optimisation model includes the time period of relief opportunities within which a train crew can be relieved at any relief point. Existing models and algorithms usually only consider relieving a crew at the beginning of the interval of relief opportunities which may be impractical. This model involves a large number of decision variables and constraints, and therefore a hybrid constructive heuristic with the simulated annealing search algorithm is applied to yield an optimal or near-optimal schedule. The performance of the proposed algorithms is evaluated by applying computational experiments on randomly generated test instances. The results show that the proposed approaches obtain near-optimal solutions in a reasonable computational time for large-sized problems.
Resumo:
Suspension bridges meet the steadily growing demand for lighter and longer bridges in today’s infrastructure systems. These bridges are designed to have long life spans, but with age, their main cables and hangers could suffer from corrosion and fatigue. There is a need for a simple and reliable procedure to detect and locate such damage, so that appropriate retrofitting can be carried out to prevent bridge failure. Damage in a structure causes changes in its properties (mass, damping and stiffness) which in turn will cause changes in its vibration characteristics (natural frequencies, modal damping and mode shapes). Methods based on modal flexibility, which depends on both the natural frequencies and mode shapes, have the potential for damage detection. They have been applied successfully to beam and plate elements, trusses and simple structures in reinforced concrete and steel. However very limited applications for damage detection in suspension bridges have been identified to date. This paper examines the potential of modal flexibility methods for damage detection and localization of a suspension bridge under different damage scenarios in the main cables and hangers using numerical simulation techniques. Validated finite element model (FEM) of a suspension bridge is used to acquire mass normalized mode shape vectors and natural frequencies at intact and damaged states. Damage scenarios will be simulated in the validated FE models by varying stiffness of the damaged structural members. The capability of damage index based on modal flexibility to detect and locate damage is evaluated. Results confirm that modal flexibility based methods have the ability to successfully identify damage in suspension bridge main cables and hangers.