989 resultados para Hyaline membrane disease
Resumo:
Objective To determine the relative importance of recognised risk factors for non-haemorrhagic stroke, including serum cholesterol and the effect of cholesterol-lowering therapy, on the occurrence of non-haemorrhagic stroke in patients enrolled in the LIPID (Long-term Intervention with Pravastatin in Ischaemic Disease) study. Design The LIPID study was a placebo-controlled, double-blind trial of the efficacy on coronary heart disease mortality of pravastatin therapy over 6 years in 9014 patients with previous acute coronary syndromes and baseline total cholesterol of 4-7 mmol/l. Following identification of patients who had suffered non-haemorrhagic stroke, a pre-specified secondary end point, multivariate Cox regression was used to determine risk in the total population. Time-to-event analysis was used to determine the effect of pravastatin therapy on the rate of non-haemorrhagic stroke. Results There were 388 non-haemorrhagic strokes in 350 patients. Factors conferring risk of future non-haemorrhagic stroke were age, atrial fibrillation, prior stroke, diabetes, hypertension, systolic blood pressure, cigarette smoking, body mass index, male sex and creatinine clearance. Baseline lipids did not predict non-haemorrhagic stroke. Treatment with pravastatin reduced non-haemorrhagic stroke by 23% (P= 0.016) when considered alone, and 21% (P= 0.024) after adjustment for other risk factors. Conclusions The study confirmed the variety of risk factors for non-haemorrhagic stroke. From the risk predictors, a simple prognostic index was created for nonhaemorrhagic stroke to identify a group of patients at high risk. Treatment with pravastatin resulted in significant additional benefit after allowance for risk factors. (C) 2002 Lippincott Williams Wilkins.
Resumo:
Introduction Among individuals with a history of myocardial infarction (MI), higher levels of blood pressure (BP) are associated with increased long-term risks of death from coronary heart disease. Treatment with a BP-lowering regimen, based on omapatrilat may result in greater clinical benefits than treatment with a regimen based on a regular angiotensin-converting enzyme (ACE) inhibitor because of more favourable effects on the renin-angiotensin-aldosterone system. Methods Seven hundred and twenty-three clinically stable patients with a history of MI or unstable angina, and a mean entry BP of 134/77 mmHg, were randomised to six months treatment with omapatrilat 40 mg, omapatrilat 20 mg, or matching placebo. Results After six months, mean BP levels (systolic/diastolic) in the omapatrilat 40 mg group were reduced by 4.3/ 2.9 mmHg (95% confidence interval 1.3 to 7.2/1.2 to 4.6). Mean BP levels in the omapatrilat 20 mg group were reduced by 4.6/1.0 mmHg (1.6 to 7.6/-0.7 to 2.6) in comparison with the placebo group. Both doses of omapatrilat also produced significant decreases in plasma ACE activity and significant increases in levels of plasma renin activity, atrial natriuretic peptide, endothelin and homocysteine (p
Resumo:
Objective. This is an over-view of the cellular biology of upper nasal mucosal cells that have special characteristics that enable them to be used to diagnose and study congenital neurological diseases and to aid neural repair. Study Design: After mapping the distribution of neural cells in the upper nose, the authors' investigations moved to the use of olfactory neurones to diagnose neurological diseases of development, especially schizophrenia. Olfactory-ensheating glial cells (OEGs) from the cranial cavity promote axonal penetration of the central nervous system and aid spinal cord repair in rodents. The authors sought to isolate these cells from the more accessible upper nasal cavity in rats and in humans and prove they could likewise promote neural regeneration, making these cells suitable for human spinal repair investigations. Methods: The schizophrenia-diagnosis aspect of the study entailed the biopsy of the olfactory areas of 10 schizophrenic patients and 10 control subjects. The tissue samples were sliced and grown in culture medium. The ease of cell attachment to fibronectin (artificial epithelial basement membrane), as well as the mitotic and apoptotic indices, was studied in the presence and absence of dopamine in those cell cultures. The neural repair part of the study entailed a harvesting and insertion of first rat olfactory lamina propria rich in OEGs between cut ends of the spinal cords and then later the microinjection of an OEG-rich suspension into rat spinal cords previously transected by open laminectomy. Further studies were done in which OEG insertion was performed up to 1 month after rat cord transection and also in monkeys. Results: Schizophrenic patients' olfactory tissues do not easily attach to basement membrane compared with control subjects, adding evidence to the theory that cell wall anomalies are part of the schizophrenic lesion of neurones. Schizophrenic patient cell cultures had higher mitotic and apoptotic indices compared with control subjects. The addition of dopamine altered these indices enough to allow accurate differentiation of schizophrenics from control patients, leading to, possibly for the first time, an early objective diagnosis of schizophrenia and possible assessment of preventive strategies. OEGs from the nose were shown to be as effective as those from the olfactory bulb in promoting axonal growth across transected spinal cords even when added I month after injury in the rat. These otherwise paraplegic rats grew motor and proprioceptive and fine touch fibers with corresponding behavioral improvement. Conclusions. The tissues of the olfactory mucosa are readily available to the otolaryngologist. Being surface cells, they must regenerate (called neurogenesis). Biopsy of this area and amplification of cells in culture gives the scientist a window to the developing brain, including early diagnosis of schizophrenia. The Holy Grail of neurological disease is the cure of traumatic paraplegia and OEGs from the nose promote that repair. The otolaryngologist may become the necessary partner of the neurophysiologist and spinal surgeon to take the laboratory potential of paraplegic cure into the day-to-day realm of clinical reality.
Resumo:
The presence of a basal nonselective cation permeability was mainly investigated in primary cultures of rat cardiac microvascular endothelial cells (CMEC) by applying both the patch-clamp technique and Fura-2 microfluorimetry. With low EGTA in the pipette solution, the resting membrane potential of CMEC was -21.2 +/- 1.1 mV, and a Ca2+-activated Cl- conductance was present. When the intracellular Ca2+ was buffered with high EGTA, the membrane potential decreased to 5.5 +/- 1.2 mV. In this condition, full or partial substitution of external Na+ by NMDG(+) proportionally reduced the inward component of the basal I-V relationship. This current was dependent on extracellular monovalent cations with a permeability sequence of K+ > Cs+ > Na+ > Li+ and was inhibited by Ca2+, La3+, Gd3+, and amiloride. The K+/Na+ permeability ratio, determined using the Goldman-Hodgkin-Katz equation, was 2.01. The outward component of the basal I-V relationship was reduced when intracellular K+ was replaced by NMDG(+), but was not sensitive to substitution by Cs+. Finally, microfluorimetric experiments indicated the existence of a basal Ca2+ entry pathway, inhibited by La3+ and Gd3+. The basal nonselective cation permeability in CMEC could be involved both in the control of myocardial ionic homeostasis, according to the model of the blood-heart barrier, and in the modulation of Ca2+ -dependent processes. (C) 2002 Elsevier Science (USA).
Resumo:
Streptococcus pyogenes (group A streptococcus) strains may express several distinct fibronectin-binding proteins (FBPs) which are considered as major streptococcal adhesins. Of the FBPs, SfbI was shown in vitro to promote internalization of the bacterium into host cells and has been implicated in persistence. In the tropical Northern Territory, where group A streptococcal infection is common, multiple genotypes of the organism were found among isolates from invasive disease cases and no dominant strains were observed. To determine whether any FBPs is associated with invasive disease propensity of S. pyogenes, we have screened streptococcal isolates from bacteraemic and necrotizing fasciitis patients and isolates from uncomplicated infections for genetic endowment of 4 FBPs. No difference was observed in the distribution of sfbII, fbp54 and sfbI between the blood isolates' and isolates from uncomplicated infection. We conclude that the presence of sfbI does not appear to promote invasive diseases, despite its association with persistence. We also show a higher proportion of group A streptococcus strains isolated from invasive disease cases possess prtFII when compared to strains isolated from non-invasive disease cases. We suggest that S. pyogenes may recruit different FBPs for different purposes.
Resumo:
Distinct Echinococcus granulosus life cycle patterns have been described in North America: domestic and sylvatic. Gene sequences of the sylvatic E. granulosus indicate that it represents a separate variant. Case-based data have suggested that the course of sylvatic disease is less severe than that of domestic disease. which led to the recommendation to treat cystic echinococcosis patients in the Arctic by careful medical management rather than by aggressive surgery. We recently reported the first two documented E. granalosus human cases in Alaska with accompanying severe sequelae. Here we describe the results of molecular genetic analysis of the cyst material of one of the subjects that supported identification of the parasite as the sylvatic (cervid) strain and not the domestic (common sheep strain), which was initially thought to be implicated in these unusually severe Alaskan cases.
Resumo:
The development of a malaria vaccine seems to be a definite possibility despite the fact that even individuals with a life time of endemic exposure do not develop sterile immunity. An effective malaria vaccine would be invaluable in preventing malaria-associated deaths in endemic areas, especially amongst children less than 5 years of age and pregnant women. This review discusses our current understanding of immunity against the asexual blood stage of malaria - the stage that is responsible for the symptoms of the disease - and approaches to the design of an asexual blood stage vaccine.
Resumo:
The Trypanosomatidae comprise a large group of parasitic protozoa, some of which cause important diseases in humans. These include Tryanosoma brucei (the causative agent of African sleeping sickness and nagana in cattle), Trypanosoma cruzi (the causative agent of Chagas' disease in Central and South America), and Leishmania spp. (the causative agent of visceral and [muco]cutaneous leishmaniasis throughout the tropics and subtropics). The cell surfaces of these parasites are covered in complex protein- or carbohydrate-rich coats that are required for parasite survival and infectivity in their respective insect vectors and mammalian hosts. These molecules are assembled in the secretory pathway. Recent advances in the genetic manipulation of these parasites as well as progress with the parasite genome projects has greatly advanced our understanding of processes that underlie secretory transport in trypanosomatids. This article provides an overview of the organization of the trypanosomatid secretory pathway and connections that exist with endocytic organelles and multiple lytic and storage vacuoles. A number of the molecular components that are required for vesicular transport have been identified, as have some of the sorting signals that direct proteins to the cell surface or organelles it? the endosome-vacuole system. Finally, the subcellular organization of the major glycosylation pathways in these parasites is reviewed. Studies on these highly divergent eukaryotes provide important insights into the molecular processes underlying secretory transport that arose very early in eukaryotic evolution. They also reveal unusual or novel aspects of secretory), transport and protein glycosylation that may be exploited in developing new antiparasite drugs.
Resumo:
Age-related macular degeneration (AMD) is the major cause of blindness in the developed world. its pathomechanism is unknown and its late onset, complex genetics and strong environmental components have all hampered investigations. Here we demonstrate the development of an animal model for AMD that reproduces features associated with geographic atrophy, a transgenic mouse line (mcd/mcd) expressing a mutated form of cathepsin D that is enzymatically inactive thus impairing processing of phagocytosed photoreceptor outer segments in the retinal pigment epithelial (RPE) cells. Pigmentary changes indicating RPE cell atrophy and a decreased response to flash electroretinograms were observed in 11- to 12-month-old mcd/mcd mice. Histological studies showed RPE cell proliferation, photoreceptor degeneration, shortening of photoreceptor outer segments, and accumulation of immunoreactive photoreceptor breakdown products in the RPE cells. An accelerated photoreceptor cell death was detected in 12-month-old mcd/mcd mice. Transmission electron microscopy demonstrated presence of basal laminar and linear deposits that are considered to be the hallmarks of AMD. Small hard drusen associated with human age-related maculopathy were absent in the mcd/mcd mouse model at the ages analyzed. in summary, this model presents several features of AMD, thus providing a valuable tool for investigating the underlying biological processes and pathomechanism of AMD.
Resumo:
Motivation: A major issue in cell biology today is how distinct intracellular regions of the cell, like the Golgi Apparatus, maintain their unique composition of proteins and lipids. The cell differentially separates Golgi resident proteins from proteins that move through the organelle to other subcellular destinations. We set out to determine if we could distinguish these two types of transmembrane proteins using computational approaches. Results: A new method has been developed to predict Golgi membrane proteins based on their transmembrane domains. To establish the prediction procedure, we took the hydrophobicity values and frequencies of different residues within the transmembrane domains into consideration. A simple linear discriminant function was developed with a small number of parameters derived from a dataset of Type II transmembrane proteins of known localization. This can discriminate between proteins destined for Golgi apparatus or other locations (post-Golgi) with a success rate of 89.3% or 85.2%, respectively on our redundancy-reduced data sets.
Resumo:
Caveolae are small invaginations of the cell surface that are abundant in mature adipocytes. A recent study (Kanzaki, M., and Pessin, J. E. (2002) J. Biol Chem 277, 25867-25869) described novel caveolin- and actin-containing structures associated with the adipocyte cell surface that contain specific signaling proteins. We have characterized these structures, here termed caves, using light and electron microscopy and observe that they represent surface-connected wide invaginations of the basal plasma membrane that are sometimes many micrometers in diameter. Rather than simply a caveolar domain, these structures contain all elements of the plasma membrane including clathrin-coated pits, lipid raft markers, and non-raft markers. GLUT4 is recruited to caves in response to insulin stimulation. Caves can occupy a significant proportion of the plasma membrane area and are surrounded by cortical actin. Caveolae density in caves is similar to that on the bulk plasma membrane, but because these structures protrude much deeper into the plane of focus of the light microscope molecules such as caveolin and other plasma membrane proteins appear more concentrated in caves. We conclude that the adipocyte surface membrane contains numerous wide invaginations that do not represent novel caveolar structures but rather large surface caves.
Resumo:
Both angiotensin-converting enzyme (ACE) inhibitors and AT-1 receptor antagonists reduce the effects of angiotensin II, however they may have different clinical effects. This is because the ACE inhibitors, but not the AT-1 receptor antagonists, increase the levels of substance P, bradykinin and tissue plasminogen activator. The AT-1 receptor antagonists, but not the ACE inhibitors, are capable of inhibiting the effects of angiotensin II produced by enzymes other than ACE. On the basis of the present clinical trial evidence, AT-1 receptor antagonists, rather than the ACE inhibitors, should be used to treat hypertension associated with left ventricular (LV) hypertrophy. Both groups of drugs are useful when hypertension is not complicated by LV hypertrophy, and in diabetes. In the treatment of diabetes with or without hypertension, there is good clinical support for the use of either an ACE inhibitor or an AT-1 receptor antagonist. ACE inhibitors are recommended in the treatment of renal disease that is not associated with diabetes, after myocardial infarction when left ventricular dysfunction is present, and in heart failure. As the incidence of cough is much lower with the AT-1 receptor antagonists, these can be substituted for ACE inhibitors in patients with hypertension or heart failure who have persistent cough. Preliminary studies suggest that combining an AT-1 receptor antagonist with an ACE inhibitor may be more effective than an ACE inhibitor alone in the treatment of hypertension, diabetes with hypertension, renal disease without diabetes and heart failure. However, further trials are required before combination therapy can be recommended in these conditions.
Resumo:
Protease-activated receptors type 2 (PAR2) are activated by serine proteases like trypsin and mast cell tryptase. The function and physiological significance of PAR2 receptors is poorly understood, but recent studies suggest a role during inflammatory processes in both airways and intestine. PAR2 receptors are also likely to participate in the control of ion transport in these tissues. We demonstrate that stimulation of PAR2 in airways and intestine significantly enhanced ion transport. Trypsin induced CI- secretion in both airways and intestine when added to the basolateral but not to the luminal side of these tissues. In both airways and intestine, stimulation of ion transport was largely dependent on the increase in intracellular Ca2+. Effects of trypsin were largely reduced by basolateral bumetanide and barium and by trypsin inhibitor. Thrombin, an activator of proteinase-activated receptors types 1, 3, and 4 had no effects on equivalent short-circuit current in either airways or intestine. Expression of PAR2 in colon and airways was further confirmed by reverse transcription-polymerase chain reaction. We postulate that these receptors play a significant role in the regulation of electrolyte transport, which might be important during inflammatory diseases of airways and intestine.