953 resultados para Human mesenchymal stem cells
Resumo:
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor with poor prognosis due in part to drug resistance and high incidence of tumor recurrence. The drug resistant and cancer recurrence phenotype may be ascribed to the presence of glioblastoma stem cells (GSCs), which seem to reside in special stem-cell niches in vivo and require special culture conditions including certain growth factors and serum-free medium to maintain their stemness in vitro. Exposure of GSCs to fetal bovine serum (FBS) can cause their differentiation, the underlying mechanism of which remains unknown. Reactive oxygen species (ROS) play an important role in normal stem cell differentiation, but their role in affecting cancer stem cell fate remains unclear. Whether the metabolic characteristics of GSCs are different from other glioblastoma cells and can be targeted are also unknown. In this study, we used several stem-like glioblastoma cell lines derived from clinical tissues by typical neurosphere culture system or orthotopic xenografts, and showed that addition of fetal bovine serum to the medium induced an increase of ROS, leading to aberrant differentiation and decreases of stem cell markers such as CD133. We found that exposure of GSCs to serum induced their differentiation through activation of mitochondrial respiration, leading to an increase in superoxide (O2-) generation and a profound ROS stress response manifested by upregulation of oxidative stress response pathway. This increase in mitochondrial ROS led to a down-regulation of molecules including SOX2, and Olig2, and Notch1 that are important for stem cell function and an upregulation of mitochondrial superoxide dismutase SOD2 that converts O2- to H2O2. Neutralization of ROS by antioxidant N-acetyl-cysteine in the serum-treated GSCs suppressed the increase of superoxide and partially rescued the expression of SOX2, Olig2, and Notch1, and prevented the serum-induced differentiation phenotype. Additionally, GSCs showed high dependence on glycolysis for energy production. The combination of a glycolytic inhibitor 3-BrOP and a chemotherapeutic agent BCNU depleted cellular ATP and inhibited the repair of BCNU-induced DNA damage, achieving strikingly synergistic killing effects in drug resistant GSCs. This study uncovers the metabolic properties of glioblastoma stem cells and suggests that mitochondrial function and cellular redox status may profoundly affect the fates of glioblastoma stem cells via a ROS-mediated mechanism, and that the active glycolytic metabolism in cancer stem cells may provide a biochemical basis for developing novel therapeutic strategies to effectively eliminate GSCs.
Resumo:
STATs play crucial roles in a wide variety of biological functions, including development, proliferation, differentiation, migration and in cancer development. In the present study, we examined the impact of Stat3 deletion or activation on behavior of keratinocytes, including keratinocyte stem cells (KSCs). Deletion of Stat3 specifically in the bulge region of the hair follicle using K15.CrePR1 X Stat3fl/fl mice led to decreased tumor development by altering survival of bulge region KSCs. To further understand the role of KSCs in skin tumorigenesis, K5.Stat3C transgenic (Tg) mice which express a constitutively active/dimerized form of Stat3 called Stat3C via the bovine keratin 5 (K5) promoter were studied. The number of CD34 and α6 integrin positive cells was significantly reduced in Tg mice as compared to non-transgenic (NTg) littermates. There was a concomitant increase in the progenitor populations (Lgr-6, Lrig-1 and Sca-1) in the Tg mice vs. the stem cell population (CD34 and Keratin15). To investigate the mechanism underlying the increase in the progenitor population at the expense of bulge region KSCs we examined if Stat3C expression was involved in inducing migration of the bulge region KSCs. There was altered β-catenin and α6-integrin expression in the hair follicles of Tg mice, which may have contributed to reduced adhesive interactions between the epithelial cells and the basement membrane facilitating migration out of the niche. To further study the effect of Stat3 on differentiation of keratinocytes we analyzed the epidermal keratinocytes in K5.Cre X Stat3fl/fl mice. There was an increase in the expression of epidermal differentiation markers in the Stat3 knockout mice. These data suggest that deletion of Stat3 in the epidermis and hair follicle induced differentiation in these cells. Preliminary studies done with the BK5.Stat3C mouse model suggests that multiple hair follicle stem/progenitor populations may be involved in skin tumor development and progression in this model of skin tumorigenesis. Overall, these data suggest that Stat3 plays an important role in differentiation as well as migration of keratinocytes and that these effects may play a role during epithelial carcinogenesis.
Resumo:
Glioblastoma multiforme (GBM) tumors are the most common malignant primary brain tumors in adults. The current theory is that these tumors are caused by self-renewing glioblastoma-derived stem cells (GSCs). At the current time, the mechanisms that regulate self-renewal and other oncogenic properties of GSCs remain unknown. Recently, we found transcriptional repressor REST maintains self-renewal in neural stem cells (NSCs) and in GSCs. REST also regulates other oncogenic properties, such as apoptosis, invasion and proliferation. However, the mechanisms by which REST regulates these oncogenic properties are unknown. In an attempt to determine these mechanisms, we performed loss and gain-of-function experiments and genome-wide mRNA expression analysis in GSCs, and we were able to identify REST-regulated genes in GSCs. This was accomplished, after screening concordantly regulated genes in NSCs and GSCs, utilizing two RE1 databases, and setting two-fold expression as filters on the resulting genes. These results received further validation by qRT-PCR. Ingenuity Pathway Analysis (IPA) analysis further revealed the top REST target genes in GSCs were downstream targets of REST and/or involved in other cancers in other cell lines. IPA also revealed that many of the differentially-regulated genes identified in this study are involved in oncogenic properties seen in GBM, and which we believe are related to REST expression.
Resumo:
Use of Echogenic Immunoliposomes for Delivery of both Drug and Stem Cells for Inhibition of Atheroma Progression By Ali K. Naji B.S. Advisor: Dr. Melvin E. Klegerman PhD Background and significance: Echogenic liposomes can be used as drug and cell delivery vehicles that reduce atheroma progression. Vascular endothelial growth factor (VEGF) is a signal protein that induces vasculogenesis and angiogenesis. VEGF functionally induces migration and proliferation of endothelial cells and increases intracellular vascular permeability. VEGF activates angiogenic transduction factors through VEGF tyrosine kinase domains in high-affinity receptors of endothelial cells. Bevacizumab is a humanized monoclonal antibody specific for VEGF-A which was developed as an anti-tumor agent. Often, anti-VEGF agents result in regression of existing microvessels, inhibiting tumor growth and possibly causing tumor shrinkage with time. During atheroma progression neovasculation in the arterial adventitia is mediated by VEGF. Therefore, bevacizumab may be effective in inhibiting atheroma progression. Stem cells show an ability to inhibit atheroma progression. We have previously demonstrated that monocyte derived CD-34+ stem cells that can be delivered to atheroma by bifunctional-ELIP ( BF-ELIP) targeted to Intercellular Adhesion Molecule-1 (ICAM-1) and CD-34. Adhesion molecules such as ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1) are expressed by endothelial cells under inflammatory conditions. Ultrasound enhanced liposomal targeting provides a method for stem cell delivery into atheroma and encapsulated drug release. This project is designed to examine the ability of echogenic liposomes to deliver bevacizumab and stem cells to inhibit atheroma progression and neovasculation with and without ultrasound in vitro and optimize the ultrasound parameters for delivery of bevacizumab and stem cells to atheroma. V Hypotheses: Previous studies showed that endothelial cell VEGF expression may relate to atherosclerosis progression and atheroma formation in the cardiovascular system. Bevacizumab-loaded ELIP will inhibit endothelial cell VEGF expression in vitro. Bevacizumab activity can be enhanced by pulsed Doppler ultrasound treatment of BEV-ELIP. I will also test the hypothesis that the transwell culture system can serve as an in vitro model for study of US-enhanced targeted delivery of stem cells to atheroma. Monocyte preparations will serve as a source of CD34+ stem cells. Specific Aims: Induce VEGF expression using PKA and PKC activation factors to endothelial cell cultures and use western blot and ELISA techniques to detect the expressed VEGF. Characterize the relationship between endothelial cell proliferation and VEGF expression to develop a specific EC culture based system to demonstrate BEV-ELIP activity as an anti-VEGF agent. Design a cell-based assay for in vitro assessment of ultrasound-enhanced bevacizumab release from echogenic liposomes. Demonstrate ultrasound delivery enhancement of stem cells by applying different types of liposomes on transwell EC culture using fluorescently labeled monocytes and detect the effect on migration and attachment rate of these echogenic liposomes with and without ultrasound in vitro.
Resumo:
Mechanisms of multidrug resistance (MDR) were studied in two independent MDR sublines (AdR1.2 and SRA1.2) derived from the established human colon carcinoma cell line LoVo. AdR1.2 was developed by long-term continuous exposure of the cells to adriamycin (AdR) in stepwise increments of concentration, while SRA1.2 was selected by repetitive pulse treatments with AdR at a single concentration. In this dissertation, the hypothesis that the mechanism of drug resistance in SRA1.2 is different than that in AdR1.2 is tested. While SRA1.2 demonstrated similar biological characteristics when compared to the parental LoVo, AdR1.2 exhibited remarkable alterations in biological properties. The resistance phenotype of AdR1.2 was reversible when the cells were grown in the drug-free medium whereas SRA1.2 maintained its resistance for at least 10 months under similar conditions. Km and Vmax of carrier-mediated facilitated diffusion AdR transport were similar among the three lines. However, both resistant sublines exhibited an energy-dependent drug efflux. AdR1.2 appeared to possess an activated efflux pump, and a decreased nucleus-binding of AdR, whereas SRA1.2 showed merely a lower affinity in binding of AdR to the nuclei. Southern blot analysis showed no amplification of the MDR1 gene in either of the two resistant subclones. However, Western blot analysis using the C219 monoclonal antibody against P170 glycoprotein detected a Mr 150-kDa plasma protein (P150) in AdR1.2 but not in SRA1.2 or in the parental LoVo. In vitro phosphorylation studies revealed that P150 was a phosphoprotein; its phosphorylation was Mg$\sp{2+}$-dependent and could be enhanced by verapamil, an agent capable of increasing intracellular AdR accumulation in AdR1.2 cells. The phosphorylation studies also revealed elevated phosphorylation of a Mr 66-kDa plasma membrane protein that was detectable in the AdR1.2 revertant and in AdR1.2 when verapamil was present, suggesting that hyperphosphorylation of the Mr 66-kDa protein may be related to the reversal of MDR. SDS-PAGE of the plasma membrane protein demonstrated overproduction of a Mr 130-kDa, MDR-related protein in both the resistant sublines. The Mr 130-kDa, MDR-related protein in both the resistant sublines. The Mr 130-kDa protein was not immunoreactive with C219, but its absence in the AdR1.2 revertant and the parental LoVo suggests that it is an MDR-related plasma membrane protein. In conclusion, the results from this study support the author's hypothesis that the mechanisms responsible for "Acquired" and "Natural" MDR are not identical. ^
Resumo:
Matrix metalloproteinase-9 (MMP-9) plays an important role in tumor invasion and angiogenesis. Secretion of MMP-9 has been reported in various cancer types including lung cancer, brain cancer, colon cancer, and breast cancer. Heregulin is a growth factor that regulates growth and differentiation of normal breast cells as well as mammary tumor cells. To study the role of heregulin in breast cancer metastasis, we tested whether heregulin may regulate MMP-9 secretion. By screening a panel of breast cancer cell line for their ability to respond to heregulin and produce MMP-9, we have found that MMP-9 secretion can be induced by heregulin-β1 in two breast cancer cell lines, SKBr3 and MCF-7. In both cell lines, increase of MMP-9 activity as shown by zymography was accompanied by increased protein level as well as mRNA level of MMP-9. Using a reporter luciferase assay, we have identified that proximal −670bp promoter of MMP-9 had similar activity to a 2.2kb MMP-9 promoter in response to heregulin stimulation. Heregulin treatment of SKBr3 and MCF-7 activated multiple signaling pathways inside cells. These include the Erk pathway, the p38 kinase pathway, PKC pathway, and PI-3K pathway. To examine which pathways are involved in MMP-9 activation by heregulin, we have used a panel of chemical inhibitors to specifically inhibit each one of these pathways. Ro-31-8220 (PKC inhibitor) and SB203580 (p38 kinase inhibitor) completely blocked heregulin activation of MMP-9. On the other hand, PD098059 (MEK-1 inhibitor) partially blocked MMP-9 activation, whereas PI-3K inhibitor, wortmannin, had no effect. Therefore, at least three signaling pathways are involved in activation of MMP-9 by heregulin. Since MMP-9 is tightly associated with metastatic potential, our study also suggests that heregulin may enhance breast tumor metastasis through induction of MMP-9 expression. ^
Resumo:
Tissue transglutaminase (tTGase) is an enzyme that catalyzes the posttranslational modification of proteins via Ca2+-dependent cross-linking reactions. In this study, we extended our earlier observation that tTGase is highly expressed in MCF-7 human breast carcinoma cells selected for the multidrug resistance phenotype (MCF-7/DOX). To directly assess the involvement of tTGase in drug resistance, parental MCF-7 (MCF-7/WT) cells were transfected with cDNAs encoding either a catalytically active (wildtype) or inactive (mutant) tTGase protein. Expression of wildtype tTGase led to spontaneous apoptosis in MCF-7/WT cells, while the mutant tTGase was tolerated by the cells but did not confer resistance to doxorubicin. Analysis of calcium by a spectrofluorometric technique revealed that MCF-7/DOX cells exhibit a defective mechanism in intracellular calcium mobilization, which may play a role in preventing the in situ activation of tTGase and thus allowing the cells to grow despite expressing this enzyme. An elevation in intracellular calcium by treatment with the calcium ionophore A23187 induced rapid and substantial apoptosis in MCF-7/DOX cells as determined by morphological and biochemical criteria. Pretreatment of MCF-7/DOX cells with a tTGase-specific inhibitor (monodansylcadaverine) suppressed A12387-induced apoptosis, suggesting the possible involvement of tTGase-catalyzed protein cross-linking activity. A23187-induced apoptosis in MCF-7/DOX cells was further characterized by PARP cleavage and activation of downstream caspases (-3, -6, and -7). Another interesting aspect of tTGase/A23187-induced apoptosis in MCF-7/DOX cells was that these cells failed to show any prototypic changes associated with the mitochondrial (altered membrane potential, cytochrome c release, caspase-9 activation), receptor-induced (Bid cleavage), or endoplasmic reticulum-stressed (caspase-12 activation) apoptotic pathways. In summary, our data demonstrate that, despite being highly resistant to conventional chemotherapeutic drugs, MCF-7/DOX cells are highly sensitive to apoptosis induced by increased intracellular calcium. We conclude that tTGase does not play a direct role in doxorubicin resistance in MCF-7/DOX cells, but may play a role in enhancing the sensitivity of these cells to undergo apoptosis. ^
Resumo:
We consider a simple mathematical model of tumor growth based on cancer stem cells. The model consists of four hyperbolic equations of first order to describe the evolution of different subpopulations of cells: cancer stem cells, progenitor cells, differentiated cells and dead cells. A fifth equation is introduced to model the evolution of the moving boundary. The system includes non-local terms of integral type in the coefficients. Under some restrictions in the parameters we show that there exists a unique homogeneous steady state which is stable.
Resumo:
A diet high in fiber is associated with a decreased incidence and growth of colon cancers. Butyrate, a four-carbon short-chain fatty acid product of fiber fermentation within the colon, appears to mediate these salutary effects. We sought to determine the molecular mechanism by which butyrate mediates growth inhibition of colonic cancer cells and thereby to elucidate the molecular link between a high-fiber diet and the arrest of colon carcinogenesis. We show that concomitant with growth arrest, butyrate induces p21 mRNA expression in an immediate-early fashion, through transactivation of a promoter cis-element(s) located within 1.4 kb of the transcriptional start site, independent of p53 binding. Studies using the specific histone hyperacetylating agent, trichostatin A, and histone deacetylase 1 indicate that growth arrest and p21 induction occur through a mechanism involving histone hyperacetylation. We show the critical importance of p21 in butyrate-mediated growth arrest by first confirming that stable overexpression of the p21 gene is able to cause growth arrest in the human colon carcinoma cell line, HT-29. Furthermore, using p21-deleted HCT116 human colon carcinoma cells, we provide convincing evidence that p21 is required for growth arrest to occur in response to histone hyperacetylation, but not for serum starvation nor postconfluent growth. Thus, p21 appears to be a critical effector of butyrate-induced growth arrest in colonic cancer cells, and may be an important molecular link between a high-fiber diet and the prevention of colon carcinogenesis.
Resumo:
During differentiation in vitro, embryonic stem (ES) cells generate progenitors for most hemato-lymphoid lineages. We studied the developmental potential of two ES cell subpopulations that share the fetal stem cell antigen AA4.1 but differ in expression of the lymphoid marker B220 (CD45R). Upon transfer into lymphoid deficient mice, the B220+ population generated a single transient wave of IgM+ IgD+ B cells but failed to generate T cells. In contrast, transfer of the B220− fraction achieved long-term repopulation of both T and B lymphoid compartments and restored humoral and cell-mediated immune reactions in the recipients. To assess the hemato-lymphopoietic potential of ES cell subsets in comparison to their physiological counterparts, cotransplantation experiments with phenotypically homologous subsets of fetal liver cells were performed, revealing a more potent developmental capacity of the latter. The results suggest that multipotential and lineage-committed lymphoid precursors are generated during in vitro differentiation of ES cells and that both subsets can undergo complete final maturation in vivo.
Resumo:
Growth factors can influence lineage determination of neural crest stem cells (NCSCs) in an instructive manner, in vitro. Because NCSCs are likely exposed to multiple signals in vivo, these findings raise the question of how stem cells would integrate such combined influences. Bone morphogenetic protein 2 (BMP2) promotes neuronal differentiation and glial growth factor 2 (GGF2) promotes glial differentiation; if NCSCs are exposed to saturating concentrations of both factors, BMP2 appears dominant. By contrast, if the cells are exposed to saturating concentrations of both BMP2 and transforming growth factor β1 (which promotes smooth muscle differentiation), the two factors appear codominant. Sequential addition experiments indicate that NCSCs require 48–96 hrs in GGF2 before they commit to a glial fate, whereas the cells commit to a smooth muscle fate within 24 hr in transforming growth factor β1. The delayed response to GGF2 does not reflect a lack of functional receptors; however, because the growth factor induces rapid mitogen-activated protein kinase phosphorylation in naive cells. Furthermore, GGF2 can attenuate induction of the neurogenic transcription factor mammalian achaete-scute homolog 1, by low doses of BMP2. This short-term antineurogenic influence of GGF2 is not sufficient for glial lineage commitment, however. These data imply that NCSCs exhibit cell-intrinsic biases in the timing and relative dosage sensitivity of their responses to instructive factors that influence the outcome of lineage decisions in the presence of multiple factors. The relative delay in glial lineage commitment, moreover, apparently reflects successive short-term and longer-term actions of GGF2. Such a delay may help to explain why glia normally differentiate after neurons, in vivo.
Resumo:
The stimulation by Flk2-ligand (FL) of blast colony formation by murine bone marrow cells was selectively potentiated by the addition of regulators sharing in common the gp130 signaling receptor–leukemia inhibitory factor (LIF), oncostatin M, interleukin 11, or interleukin 6. Recloning of blast colony cells indicated that the majority were progenitor cells committed exclusively to macrophage formation and responding selectively to proliferative stimulation by macrophage colony-stimulating factor. Reculture of blast colony cells initiated by FL plus LIF in cultures containing granulocyte/macrophage colony-stimulating factor plus tumor necrosis factor α indicated that at least some of the cells were capable of maturation to dendritic cells. The cells forming blast colonies in response to FL plus LIF were unrelated to those forming blast colonies in response to stimulation by stem cell factor and appear to be a distinct subset of mature hematopoietic stem cells.
Resumo:
Diets high in fat are associated with an increased risk of prostate cancer, although the molecular mechanism is still unknown. We have previously reported that arachidonic acid, an omega-6 fatty acid common in the Western diet, stimulates proliferation of prostate cancer cells through production of the 5-lipoxygenase metabolite, 5-HETE (5-hydroxyeicosatetraenoic acid). We now show that 5-HETE is also a potent survival factor for human prostate cancer cells. These cells constitutively produce 5-HETE in serum-free medium with no added stimulus. Exogenous arachidonate markedly increases the production of 5-HETE. Inhibition of 5-lipoxygenase by MK886 completely blocks 5-HETE production and induces massive apoptosis in both hormone-responsive (LNCaP) and -nonresponsive (PC3) human prostate cancer cells. This cell death is very rapid: cells treated with MK886 showed mitochondrial permeability transition between 30 and 60 min, externalization of phosphatidylserine within 2 hr, and degradation of DNA to nucleosomal subunits beginning within 2–4 hr posttreatment. Cell death was effectively blocked by the thiol antioxidant, N-acetyl-l-cysteine, but not by androgen, a powerful survival factor for prostate cancer cells. Apoptosis was specific for 5-lipoxygenase—programmed cell death was not observed with inhibitors of 12-lipoxygenase, cyclooxygenase, or cytochrome P450 pathways of arachidonic acid metabolism. Exogenous 5-HETE protects these cells from apoptosis induced by 5-lipoxygenase inhibitors, confirming a critical role of 5-lipoxygenase activity in the survival of these cells. These findings provide a possible molecular mechanism by which dietary fat may influence the progression of prostate cancer.
Resumo:
The enzyme poly(ADP-ribose) polymerase (Parp) catalyzes poly(ADP-ribosyl)ation reaction and is involved in DNA repair and cell death induction upon DNA damages. Meanwhile, poly(ADP-ribosyl)ation of chromosome-associated proteins is suggested to be implicated in the regulation of gene expression and cellular differentiation, both of which are important in tumorigenesis. To investigate directly the role of Parp deficiency in tumorigenicity and differentiation of embryonic stem (ES) cells during tumor formation, studies were conducted by using wild-type J1 (Parp+/+) ES cells and Parp+/− and Parp−/− ES clones generated by disrupting Parp exon 1. These ES cells, irrespective of the Parp genotype, produced tumors phenotypically similar to teratocarcinoma when injected s.c. into nude mice. Remarkably, all tumors derived from Parp−/− clones contained syncytiotrophoblastic giant cells (STGCs), which possess single or multiple megalo-nuclei. The STGCs were present within large areas of intratumoral hemorrhage. In contrast, neither STGC nor hemorrhage was observed in tumors of both wild-type J1 cells and Parp+/− clones. Electron microscopic examination showed that the STGCs possess microvilli on the cell surface and contained secretory granules in the cytoplasm. Furthermore, the cytoplasms of STGCs were strongly stained with antibody against mouse prolactin, which could similarly stain trophoblasts in placenta. These morphological and histochemical features indicate that the STGCs in teratocarcinoma-like tumors derived from Parp−/− clones belong to the trophoblast cell lineage. Our findings thus suggest that differentiation of ES cells into STGCs was possibly induced by the lack of Parp during the development of teratocarcinoma.
Resumo:
Retinoids, vitamin A (retinol) and its metabolic derivatives, are required for normal vertebrate development. In murine embryonic stem (ES) cells, which remain undifferentiated when cultured in the presence of LIF (leukemia inhibitory factor), little metabolism of exogenously added retinol takes place. After LIF removal, ES cells metabolize exogenously added retinol to 4-hydroxyretinol and 4-oxoretinol and concomitantly differentiate. The conversion of retinol to 4-oxoretinol is a high-capacity reaction because most of the exogenous retinol is metabolized rapidly, even when cells are exposed to physiological (≈1 μM) concentrations of retinol in the medium. No retinoic acid or 4-oxoRA synthesis from retinol was detected in ES cells cultured with or without LIF. The cytochrome P450 enzyme CYP26 (retinoic acid hydroxylase) is responsible for the metabolism of retinol to 4-oxoretinol, and CYP26 mRNA is greatly induced (>15-fold) after LIF removal. Concomitant with the expression of CYP26, differentiating ES cells grown in the absence of LIF activate the expression of the differentiation marker gene FGF-5 whereas the expression of the stem cell marker gene FGF-4 decreases. The strong correlation between the production of polar metabolites of retinol and the differentiation of ES cells upon removal of LIF suggests that one important action of LIF in these cells is to prevent retinol metabolism to biologically active, polar metabolites such as 4-oxoretinol.