877 resultados para Human behaviour recognition
Resumo:
Chromoblastomycosis is a chronic skin infection caused by the fungus Fonsecaea pedrosoi. Exploring the reasons underlying the chronic nature of F. pedrosoi infection in a murine model of chromoblastomycosis, we find that chronicity develops due to a lack of pattern recognition receptor (PRR) costimulation. F. pedrosoi was recognized primarily by C-type lectin receptors (CLRs), but not by Toll-like receptors (TLRs), which resulted in the defective induction of proinflammatory cytokines. Inflammatory responses to F. pedrosoi could be reinstated by TLR costimulation, but also required the CLR Mincle and signaling via the Syk/CARD9 pathway. Importantly, exogenously administering TLR ligands helped clear F. pedrosoi infection in vivo. These results demonstrate how a failure in innate recognition can result in chronic infection, highlight the importance of coordinated PRR signaling, and provide proof of the principle that exogenously applied PRR agonists can be used therapeutically.
Resumo:
Microcystins (MC), a family of heptapeptide toxins produced by some genera of Cyanobacteria, have potent hepatotoxicity and tumor-promoting activity. Leukocyte infiltration in the liver was observed in MC-induced acute intoxication. Although the mechanisms of hepatotoxicity are still unclear, neutrophil infiltration in the liver may play an important role in triggering toxic injury and tumor development. The present study reports the effects of MC-LA, MC-YR and MC-LR (1 and 1000 nM) on human and rat neutrophils functions in vitro. Cell viability, DNA fragmentation, mitochondrial membrane depolarization and intracellular reactive oxygen species (ROS) levels were measured by flow cytometry. Extracellular ROS content was measured by lucigenin-amplified chemiluminescence, and cytokines were determined by ELISA. We found that these MC increased interleukin-8 (IL-8), cytokine-induced neutrophil chemoattractant-2 alpha beta (CINC-2 alpha beta) and extracellular ROS levels in human and rat neutrophils. Apart from neutrophil presence during the inflammatory process of MC-induced injury, our results suggest that hepatic neutrophil accumulation is further increased by MC-induced neutrophil-derived chemokine. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Background: The aim of this study was to identify novel candidate biomarker proteins differentially expressed in the plasma of patients with early stage acute myocardial infarction (AMI) using SELDI-TOF-MS as a high throughput screening technology. Methods: Ten individuals with recent acute ischemic-type chest pain (< 12 h duration) and ST-segment elevation AMI (1STEMI) and after a second AMI (2STEMI) were selected. Blood samples were drawn at six times after STEMI diagnosis. The first stage (T(0)) was in Emergency Unit before receiving any medication, the second was just after primary angioplasty (T(2)), and the next four stages occurred at 12 h intervals after T(0). Individuals (n = 7) with similar risk factors for cardiovascular disease and normal ergometric test were selected as a control group (CG). Plasma proteomic profiling analysis was performed using the top-down (i.e. intact proteins) SELDI-TOF-MS, after processing in a Multiple Affinity Removal Spin Cartridge System (Agilent). Results: Compared with the CG, the 1STEMI group exhibited 510 differentially expressed protein peaks in the first 48 h after the AMI (p < 0.05). The 2STEMI group, had similar to 85% fewer differently expressed protein peaks than those without previous history of AMI (76, p < 0.05). Among the 16 differentially-regulated protein peaks common to both STEMI cohorts (compared with the CG at T(0)), 6 peaks were persistently down-regulated at more than one time-stage, and also were inversed correlated with serum protein markers (cTnI, CK and CKMB) during 48 h-period after IAM. Conclusions: Proteomic analysis by SELDI-TOF-MS technology combined with bioinformatics tools demonstrated differential expression during a 48 h time course suggests a potential role of some of these proteins as biomarkers for the very early stages of AMI, as well as for monitoring early cardiac ischemic recovery. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Aims: Development of a simple, specific, rapid and inexpensive Dot-ELISA test for early diagnosis of human leptospirosis. Methods and Results: Serum samples from 90 patients diagnosed with leptospirosis were analysed by Dot-ELISA test incorporating Glycolipoprotein (GLP) antigen from serovars Copenhageni and Patoc. Results were compared with those obtained with microscopic agglutination test, currently, the gold standard reference serological method. Serum samples from healthy blood bank donors and patients diagnosed with diseases other than leptospirosis were used as negative controls. The specificities of both GLP-based assays were 97 center dot 1% and 100% with serum samples from patients with other diseases and with serum samples from healthy control group, respectively. With serum samples from patients with acute leptospirosis, sensitivity was 76 center dot 6% with Dot-ELISA Copenhageni and 90 center dot 0% with Dot-ELISA Patoc. With serum samples from patients in convalescence, sensitivity was 100% with both GLP-based assays. Conclusions: This Dot-ELISA provides a candidate antigen for serodiagnosis of leptospirosis during all phases of illness and could be a good alternative method for the early diagnosis of leptospirosis. Significance and Impact of the Study: The Dot-ELISA test is simple, specific, rapid and inexpensive. It is suitable for identifying a large number of samples and, hence, reducing the death rate of patients with leptospirosis.
Resumo:
Even though the involvement of intracellular Ca(2+) (Ca(i)(2+)) in hematopoiesis has been previously demonstrated, the relationship between Ca(i)(2+) signaling and cytokine-induced intracellular pathways remains poorly understood. Herein, the molecular mechanisms integrating Ca(2+) signaling with the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway in primary murine and human hematopoietic stem/progenitor cells stimulated by IL-3 and GM-CSF were studied. Our results demonstrated that IL-3 and GM-CSF stimulation induced increased inositol 1,4,5-trisphosphate (IP(3)) levels and Ca(i)(2+) release in murine and human hematopoietic stem/ progenitor cells. In addition, Ca(i)(2+) signaling inhibitors, such as inositol 1,4,5-trisphosphate receptor antagonist (2-APB), PKC inhibitor (GF109203), and CaMKII inhibitor (KN-62), blocked phosphorylation of MEK activated by IL-3 and GM-CSF, suggesting the participation of Ca(2+)-dependent kinases in MEK activation. In addition, we identify phospholipase C gamma 2 (PLC gamma 2) as a PLC gamma responsible for the induction of Ca(2+) release by IL-3 and GM-CSF in hematopoietic stem/progenitor cells. Furthermore, the PLCg inhibitor U73122 significantly reduced the numbers of granulocyte-macrophage colony-forming units after cytokine stimulation. Similar results were obtained in both murine and human hematopoietic stem/progenitor cells. Taken together, these data indicate a role for PLC gamma 2 and Ca(2+) signaling through the modulation of MEK in both murine and human hematopoietic stem/ progenitor cells. J. Cell. Physiol. 226: 1780-1792, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
Background/purpose The continuous advancement in cosmetic science has led to an increasing demand for the development of non-invasive, reliable scientific techniques directed toward claim substantiation, which is of utmost relevance, to obtain data regarding the efficacy and safety of cosmetic products. Methods In this work, we used the optical coherence tomography (OCT) technique to produce in vitro transversal section-images of human hair. We also compared the OCT signal before and after chemical treatment with an 18% w/w ammonium thioglycolate solution. Results The mean diameter of the medulla was 29 +/- 7 mu m and the hair diameter was 122 +/- 16 mu m in our samples of standard Afro-ethnic hair. A three-dimensional (3D) image was constructed starting from 601 cross-sectional images (slices). Each slice was taken in steps of 6.0 mu m at eight frames per second, and the entire 3D image was constructed in 60 s. Conclusion It was possible to identify, using the A-scan protocol, the principal structures: the cuticle, cortex and medulla. After chemical treatment, it was not possible to identify the main structures of hair fiber due to index matching promoted by deleterious action of the chemical agent.