941 resultados para Honeycomb and Sandwich Cantilever Beam


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deals with the study of light beam propagation through different nonlinear media. Analytical and numerical methods are used to show the formation of solitonS in these media. Basic experiments have also been performed to show the formation of a self-written waveguide in a photopolymer. The variational method is used for the analytical analysis throughout the thesis. Numerical method based on the finite-difference forms of the original partial differential equation is used for the numerical analysis.In Chapter 2, we have studied two kinds of solitons, the (2 + 1) D spatial solitons and the (3 + l)D spatio-temporal solitons in a cubic-quintic medium in the presence of multiphoton ionization.In Chapter 3, we have studied the evolution of light beam through a different kind of nonlinear media, the photorcfractive polymer. We study modulational instability and beam propagation through a photorefractive polymer in the presence of absorption losses. The one dimensional beam propagation through the nonlinear medium is studied using variational and numerical methods. Stable soliton propagation is observed both analytically and numerically.Chapter 4 deals with the study of modulational instability in a photorefractive crystal in the presence of wave mixing effects. Modulational instability in a photorefractive medium is studied in the presence of two wave mixing. We then propose and derive a model for forward four wave mixing in the photorefractive medium and investigate the modulational instability induced by four wave mixing effects. By using the standard linear stability analysis the instability gain is obtained.Chapter 5 deals with the study of self-written waveguides. Besides the usual analytical analysis, basic experiments were done showing the formation of self-written waveguide in a photopolymer system. The formation of a directional coupler in a photopolymer system is studied theoretically in Chapter 6. We propose and study, using the variational approximation as well as numerical simulation, the evolution of a probe beam through a directional coupler formed in a photopolymer system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors apply the theory of photothermal lens formation and also that of pure optical nonlinearity to account for the phase modulation in a beam as it traverses a nonlinear medium. It is used to simultaneously determine the nonlinear optical refraction and the thermo-optic coefficient. They demonstrate this technique using some metal phthalocyanines dissolved in dimethyl sulfoxide, irradiated by a Q-switched Nd:YAG laser with 10 Hz repetition rate and a pulse width of 8 ns. The mechanism for reverse saturable absorption in these materials is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nano structured noble metals have very important applications in diverse fields as photovoltaics, catalysis, electronic and magnetic devices, etc. Here, we report the application of dual beam thermal lens technique for the determination of the effect of silver sol on the absolute fluorescence quantum yield (FQY) of the laser dye rhodamine 6G. A 532 nm radiation from a diode pumped solid state laser was used as the excitation source. It has been observed that the presence of silver sol decreases the fluorescence quantum efficiency. This is expected to have a very important consequence in enhancing Raman scattering which is an important spectrochemical tool that provides information on molecular structures. We have also observed that the presence of silver sol can enhance the thermal lens signal which makes the detection of the signal easier at any concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vibrational overtone spectra of acetophenone and benzaldehyde in the visible and near-infrared regions are studied by the dual beam thermal lens and the conventional near-infrared absorption techniques. The observed increase in the mechanical frequency of the aryl CH bond from that of benzene is attributed to the decrease in the aryl CH bond length caused by the electron-withdrawing property of the substituents. Overtone spectra also demonstrate that acetophenone contains two types of methyl CH bonds arising from the anisotropic environments created by oxygen lone pair and carbonyl P electrons. The local-mode parameters of the two types of CH bonds are compared with those of acetone and acetaldehyde. The possible factors influencing the methyl CH bonds in acetophenone are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nanosecond optical limiting characteristics of sandwich-type neodymium diphthalocyanine in a co-polymer matrix of polymethyl methacrylate (PMMA) and methyl-2-cyanoacrylate have been studied for the first time. The measurements were performed using 9 ns laser pulses generated from a frequency-doubled Nd:YAG laser at 532 nm wavelength. The optical limiting performance of neodymium diphthalocyanine in co-polymer host was studied at different linear transmission. Laser damage threshold was also measured for the doped and undoped co-polymer samples. The optical limiting response is attributed to reverse saturable absorption which is due to excited-state absorption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dual beam transient thermal lens studies were carried out in rhodamine 6G methanol solutions using 532 nm pulses from a frequency doubled Nd:YAG laser. Analysis of thermal lens signal shows the existence of different nonlinear processes like two photon absorption and three photon absorption phenomena along with one photon absorption. Concentration of the dye in the solution has been found to influence the occurrence of the different processes in a significant way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have performed thermal diffusion measurements of nanofluid containing gold and rhodamine 6G dye in various ratios. At certain concentrations, gold is nearly four times more efficient than water in dissipating small temperature fluctuations in a medium, and therefore it will find applications as heat transfer fluids. We have employed dual-beam mode-matched thermal lens technique for the present investigation. It is a sensitive technique in measuring photothermal parameters because of the use of a lowpower, stabilized laser source as the probe. We also present the results of fluorescence measurements of the dye in the nanogold environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel fixed frequency beam scanning microstrip leaky wave antenna is reported. The beam scanning at fixed frequency is achieved by reactive loading. Simulation and measured results shows frequency scanability of 80° as well as fixed frequency beam steering of 68° over the −10 dB impedance band of 4.56–5.06 GHz.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among the large number of photothcrmal techniques available, photoacoustics assumes a very significant place because of its essential simplicity and the variety of applications it finds in science and technology. The photoacoustic (PA) effect is the generation of an acoustic signal when a sample, kept inside an enclosed volume, is irradiated by an intensity modulated beam of radiation. The radiation absorbed by the sample is converted into thermal waves by nonradiative de-excitation processes. The propagating thermal waves cause a corresponding expansion and contraction of the gas medium surrounding the sample, which in tum can be detected as sound waves by a sensitive microphone. These sound waves have the same frequency as the initial modulation frequency of light. Lock-in detection method enables one to have a sufficiently high signal to noise ratio for the detected signal. The PA signal amplitude depends on the optical absorption coefficient of the sample and its thermal properties. The PA signal phase is a function of the thermal diffusivity of the sample.Measurement of the PA amplitude and phase enables one to get valuable information about the thermal and optical properties of the sample. Since the PA signal depends on the optical and thennal properties of the sample, their variation will get reflected in the PA signal. Therefore, if the PA signal is collected from various points on a sample surface it will give a profile of the variations in the optical/thennal properties across the sample surface. Since the optical and thermal properties are affected by the presence of defects, interfaces, change of material etc. these will get reflected in the PA signal. By varying the modulation frequency, we can get information about the subsurface features also. This is the basic principle of PA imaging or PA depth profiling. It is a quickly expanding field with potential applications in thin film technology, chemical engineering, biology, medical diagnosis etc. Since it is a non-destructive method, PA imaging has added advantages over some of the other imaging techniques. A major part of the work presented in this thesis is concemed with the development of a PA imaging setup that can be used to detect the presence of surface and subsmface defects in solid samples.Determination of thermal transport properties such as thermal diffusivity, effusivity, conductivity and heat capacity of materials is another application of photothennal effect. There are various methods, depending on the nature of the sample, to determine these properties. However, there are only a few methods developed to determine all these properties simultaneously. Even though a few techniques to determine the above thermal properties individually for a coating can be found in literature, no technique is available for the simultaneous measurement of these parameters for a coating. We have developed a scanning photoacoustic technique that can be used to determine all the above thermal transport properties simultaneously in the case of opaque coatings such as paints. Another work that we have presented in this thesis is the determination of thermal effusivity of many bulk solids by a scanning photoacoustic technique. This is one of the very few methods developed to determine thermal effiisivity directly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antennas are necessary and vital components of communication and radar systems, but sometimes their inability to adjust to new operating scenarios can limit system performance. Reconfigurable antennas can adjust with changing system requirements or environmental conditions and provide additional levels of functionality that may result in wider instantaneous frequency bandwidths, more extensive scan volumes, and radiation patterns with more desirable side lobe distributions. Their agility and diversity created new horizons for different types of applications especially in cognitive radio, Multiple Input Multiple Output Systems, satellites and many other applications. Reconfigurable antennas satisfy the requirements for increased functionality, such as direction finding, beam steering, radar, control and command, within a confined volume. The intelligence associated with the reconfigurable antennas revolved around switching mechanisms utilized. In the present work, we have investigated frequency reconfigurable polarization diversity antennas using two methods: 1. By using low-loss, high-isolation switches such as PIN diode, the antenna can be structurally reconfigured to maintain the elements near their resonant dimensions for different frequency bands and/or polarization. 2. Secondly, the incorporation of variable capacitors or varactors, to overcome many problems faced in using switches and their biasing. The performances of these designs have been studied using standard simulation tools used in industry/academia and they have been experimentally verified. Antenna design guidelines are also deduced by accounting the resonances. One of the major contributions of the thesis lies in the analysis of the designed antennas using FDTD based numerical computation to validate their performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present thesis, possibility of beam shaping of sectoral horns and corner reflector systems'has been studied in detail. The experimental results obtained in the above two cases are compared. As far as the flanged sectoral horns are concerned, the special advantage is that the gain is increased without impairing impedance conditions. An intense study on corner reflector antennas shows that the been broadening or focussing will be possible by adjusting parameters involved. Beam tilting by imposing asymmetries is another interesting property of the systems. A comprehensive study of these fields has been presented in Chapter II. Chapter III is exclusively for describing the experimental techniques used in the present investigation. In Chapter IV, experimental results on flanged sectoral horns and corner reflector eyetses are presented. A comparative analysis of the experimental results obtained with flanged sectoral horns and corner reflector systems is presented in the Chapter V. The similarity and close resemblance in each aspects are shown by presenting typical results from these two eysteee. Theoretical aspects of both types of antennas are considered in Chapter VI. Attempts are made for co-ordinating the theoretical aspects and drawing a final conclusion. In Chapter VII. the final conclusion that the flanged sectoral horn may be considered as a corner reflector system has been drawn. The importance of the conclusions and usefulness are pointed out. The scope for further work in these lines has been indicated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vibrational overtone spectroscopy of X-H (X=C,N,O) containing molecules is an area of recent interest. The spectroscopic studies of higher vibrational levels yield valuable informations, regarding,the molecular structure, intra- and inter-molecular interactions, radiationless transitions, intra-molecular vibrational relaxations, multiphoton excitations and chemical reactivities, which cannot be z obtained by other spectroscopic methods. This thesis presents the results of experimental investigations on the overtone spectra of some organic compounds in the liquid phase for the characterization of CH bonds. The spectra in the fifth overtone region (1fiV=6) are recorded using a dual beam thermal lens setup and the lower overtones (.AV=2-5) are recorded spectrophotometrically.The thesis is presented in six chapters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The central theme of the work presented in this thesis is a careful investigation of the factors influencing the attenuation of laser beam through sea water. The thesis presents a detailed report of the work done by the author on the attenuation studies in sea water and on laser propagation through a turbulent medium. The thesis contains six chapters which are more or less self-contained with separate abstracts and references. The first chapter is divided into two parts. The first part introduces the subject of laser propagation through sea water. It includes a brief description of optical properties of sea water followed by a review of the earlier works on attenuation studies in water. The second part gives the theoretical background of the problem of laser propagation through a turbulent medium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The need for improved feed systems for large reflector antennas employed in Radio Astronomy and Satellite tracking spurred the interest in horn antenna research in the 1960's. The major requirements were to reduce spill over, cross-polarisation losses,and to enhance the aperture efficiency to the order of about 75-8O%L The search for such a feed culminated in the corrugated horn. The corrugat1e 1 horn triggered widespread interest and enthusiasm, and a large amount of work(32’34’49’5O’52’53’58’65’75’79)has already been done on this type of antennas. The properties of corrugated surfaces has been investigated in detail. It was strongly felt that the flange technique and the use of corrugated surfaces could be merged together to obtain the advantages of both. This is the idea behind the present work. Corrugations are made on the surface of flange elements. The effect of various corrugation parameters are studied. By varying the flange parameters, a good amount of data is collected and analysed to ascertain the effects of corrugated flanges. The measurements are repeated at various frequencies, in the X— and S-bands. The following parameters of the system were studied: (a) beam shaping (b) gain (c) variation of V.S.U.R. (d) possibility of obtaining circularly polarised radiation from the flanged horn. A theoretical explanation to the effects of corrugated flanges is attempted on the basis of the line-source theory. Even though this theory utilises a simplified model for the calculation of radiation patterns, fairly good agreement between the computed pattern and experimental results are observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis work has mainly concentrated on the investigation of the ,optical and thermal properties of binary semiconducting chalcogenide glasses belonging to the AivB¥5x and AZBXEX families. The technique used for these studies is a relatively new one namely, the photoacoustic (PA) technique. This technique is based on the detection of acoustic signal produced in an enclosed volume when the sample is irradiated by an intensity modulated radiation. The signal produced depends upon the optical properties of the sample, and the thermal properties of the sample, backing material and the surrounding gas. For the present studies an efficient signal beam gas-microphone PA spectrometer, consisting of a high power Xenon lamp, monochromator, light beam chopper, PA cell with microphone and lock-in amplifier, has been set up. Two PA cells have been fabricated: one for room temperature measurements and another for measurements at high temperatures. With the high temperature PA cell measurements can be taken upto 250°C. Provisions are incorporated. in both the cells to change the volume and to use different backing materials for the sample. The cells have been calibrated by measuring the frequency response of the cells using carbon black as the sample