894 resultados para Homozygosity mapping
Resumo:
Emission line ratios have been essential for determining physical parameters such as gas temperature and density in astrophysical gaseous nebulae. With the advent of panoramic spectroscopic devices, images of regions with emission lines related to these physical parameters can, in principle, also be produced. We show that, with observations from modern instruments, it is possible to transform images taken from density-sensitive forbidden lines into images of emission from high- and low-density clouds by applying a transformation matrix. In order to achieve this, images of the pairs of density-sensitive lines as well as the adjacent continuum have to be observed and combined. We have computed the critical densities for a series of pairs of lines in the infrared, optical, ultraviolet and X-rays bands, and calculated the pair line intensity ratios in the high- and low-density limit using a four- and five-level atom approximation. In order to illustrate the method, we applied it to Gemini Multi-Object Spectrograph (GMOS) Integral Field Unit (GMOS-IFU) data of two galactic nuclei. We conclude that this method provides new information of astrophysical interest, especially for mapping low- and high-density clouds; for this reason, we call it `the ld/hd imaging method`.
Resumo:
Craniotubular dysplasias (CTD) are a heterogeneous group of genetic disorders of skeletal development, whose clinical and etiological classification is still much debated. One of the most common form is the autosomal dominant craniometaphyseal dysplasia (CMD) which is associated with mutation in the ANKH gene. In the literature a few families are reported with CMD phenotype that suggest an autosomal recessive (AR) pattern of inheritance. A candidate locus at 6q21-22 has been mapped in a large inbred Brazilian family, but the gene of the recessive form is still unknown. Our data on a female patient with CMD phenotype, born from healthy first degree cousins and displaying homozygosity for polymorphic markers at the 6q21-22 locus, further support the existence of an AR CMD, expanding its clinical spectrum to a more severe phenotype. (C) 2011 Wiley-Liss, Inc.
Resumo:
Ornamental fish culture is important as an economic activity and for biodiversity conservation as well. The species of the genus Trichogaster (Perciformes, Osphronemidae), popularly known as three-spot gourami, are among the several commercial species raised around the world. In the present work, eight specimens of Thrichogaster trichopterus from aquarium trade facilities were analyzed. The karyotype was composed of 23 pairs of subtelo/acrocentric chromosomes. Fluorescent in situ hybridization allowed identifying the 18S ribosomal gene at telomeric region on long arms of the largest acrocentric pair. On the other hand, the 5S rRNA gene is located at a proximal region on a pair of medium-sized chromosomes. Such information is extremely useful in face of the risks of introduction and the development of ornamental fish trade, once many fish species can be identified only by genetic studies.
Resumo:
This paper is about the use of natural language to communicate with computers. Most researches that have pursued this goal consider only requests expressed in English. A way to facilitate the use of several languages in natural language systems is by using an interlingua. An interlingua is an intermediary representation for natural language information that can be processed by machines. We propose to convert natural language requests into an interlingua [universal networking language (UNL)] and to execute these requests using software components. In order to achieve this goal, we propose OntoMap, an ontology-based architecture to perform the semantic mapping between UNL sentences and software components. OntoMap also performs component search and retrieval based on semantic information formalized in ontologies and rules.
Resumo:
The problem of projecting multidimensional data into lower dimensions has been pursued by many researchers due to its potential application to data analyses of various kinds. This paper presents a novel multidimensional projection technique based on least square approximations. The approximations compute the coordinates of a set of projected points based on the coordinates of a reduced number of control points with defined geometry. We name the technique Least Square Projections ( LSP). From an initial projection of the control points, LSP defines the positioning of their neighboring points through a numerical solution that aims at preserving a similarity relationship between the points given by a metric in mD. In order to perform the projection, a small number of distance calculations are necessary, and no repositioning of the points is required to obtain a final solution with satisfactory precision. The results show the capability of the technique to form groups of points by degree of similarity in 2D. We illustrate that capability through its application to mapping collections of textual documents from varied sources, a strategic yet difficult application. LSP is faster and more accurate than other existing high-quality methods, particularly where it was mostly tested, that is, for mapping text sets.
Resumo:
Most multidimensional projection techniques rely on distance (dissimilarity) information between data instances to embed high-dimensional data into a visual space. When data are endowed with Cartesian coordinates, an extra computational effort is necessary to compute the needed distances, making multidimensional projection prohibitive in applications dealing with interactivity and massive data. The novel multidimensional projection technique proposed in this work, called Part-Linear Multidimensional Projection (PLMP), has been tailored to handle multivariate data represented in Cartesian high-dimensional spaces, requiring only distance information between pairs of representative samples. This characteristic renders PLMP faster than previous methods when processing large data sets while still being competitive in terms of precision. Moreover, knowing the range of variation for data instances in the high-dimensional space, we can make PLMP a truly streaming data projection technique, a trait absent in previous methods.
Resumo:
Robotic mapping is the process of automatically constructing an environment representation using mobile robots. We address the problem of semantic mapping, which consists of using mobile robots to create maps that represent not only metric occupancy but also other properties of the environment. Specifically, we develop techniques to build maps that represent activity and navigability of the environment. Our approach to semantic mapping is to combine machine learning techniques with standard mapping algorithms. Supervised learning methods are used to automatically associate properties of space to the desired classification patterns. We present two methods, the first based on hidden Markov models and the second on support vector machines. Both approaches have been tested and experimentally validated in two problem domains: terrain mapping and activity-based mapping.
Resumo:
In medical processes where ionizing radiation is used, dose planning and dose delivery are the key elements to patient safety and treatment success, particularly, when the delivered dose in a single session of treatment can be an order of magnitude higher than the regular doses of radiotherapy. Therefore, the radiation dose should be well defined and precisely delivered to the target while minimizing radiation exposure to surrounding normal tissues [1]. Several methods have been proposed to obtain three-dimensional (3-D) dose distribution [2, 3]. In this paper, we propose an alternative method, which can be easily implemented in any stereotactic radiosurgery center with a magnetic resonance imaging (MRI) facility. A phantom with or without scattering centers filled with Fricke gel solution is irradiated with Gamma Knife(A (R)) system at a chosen spot. The phantom can be a replica of a human organ such as head, breast or any other organ. It can even be constructed from a real 3-D MR image of an organ of a patient using a computer-aided construction and irradiated at a specific region corresponding to the tumor position determined by MRI. The spin-lattice relaxation time T (1) of different parts of the irradiated phantom is determined by localized spectroscopy. The T (1)-weighted phantom images are used to correlate the image pixels intensity to the absorbed dose and consequently a 3-D dose distribution with a high resolution is obtained.
Resumo:
Park CY, Tambe D, Alencar AM, Trepat X, Zhou EH, Millet E, Butler JP, Fredberg JJ. Mapping the cytoskeletal prestress. Am J Physiol Cell Physiol 298: C1245-C1252, 2010. First published February 17, 2010; doi: 10.1152/ajpcell.00417.2009.-Cell mechanical properties on a whole cell basis have been widely studied, whereas local intracellular variations have been less well characterized and are poorly understood. To fill this gap, here we provide detailed intracellular maps of regional cytoskeleton (CSK) stiffness, loss tangent, and rate of structural rearrangements, as well as their relationships to the underlying regional F-actin density and the local cytoskeletal prestress. In the human airway smooth muscle cell, we used micropatterning to minimize geometric variation. We measured the local cell stiffness and loss tangent with optical magnetic twisting cytometry and the local rate of CSK remodeling with spontaneous displacements of a CSK-bound bead. We also measured traction distributions with traction microscopy and cell geometry with atomic force microscopy. On the basis of these experimental observations, we used finite element methods to map for the first time the regional distribution of intracellular prestress. Compared with the cell center or edges, cell corners were systematically stiffer and more fluidlike and supported higher traction forces, and at the same time had slower remodeling dynamics. Local remodeling dynamics had a close inverse relationship with local cell stiffness. The principal finding, however, is that systematic regional variations of CSK stiffness correlated only poorly with regional F-actin density but strongly and linearly with the regional prestress. Taken together, these findings in the intact cell comprise the most comprehensive characterization to date of regional variations of cytoskeletal mechanical properties and their determinants.
Resumo:
The issue of how children learn the meaning of words is fundamental to developmental psychology. The recent attempts to develop or evolve efficient communication protocols among interacting robots or Virtual agents have brought that issue to a central place in more applied research fields, such as computational linguistics and neural networks, as well. An attractive approach to learning an object-word mapping is the so-called cross-situational learning. This learning scenario is based on the intuitive notion that a learner can determine the meaning of a word by finding something in common across all observed uses of that word. Here we show how the deterministic Neural Modeling Fields (NMF) categorization mechanism can be used by the learner as an efficient algorithm to infer the correct object-word mapping. To achieve that we first reduce the original on-line learning problem to a batch learning problem where the inputs to the NMF mechanism are all possible object-word associations that Could be inferred from the cross-situational learning scenario. Since many of those associations are incorrect, they are considered as clutter or noise and discarded automatically by a clutter detector model included in our NMF implementation. With these two key ingredients - batch learning and clutter detection - the NMF mechanism was capable to infer perfectly the correct object-word mapping. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Unveiling the mechanisms of energy relaxation in biomolecules is key to our understanding of protein stability, allostery, intramolecular signaling, and long-lasting quantum coherence phenomena at ambient temperatures. Yet, the relationship between the pathways of energy transfer and the functional role of the residues involved remains largely unknown. Here, we develop a simulation method of mapping out residues that are highly efficient in relaxing an initially localized excess vibrational energy and perform site-directed mutagenesis functional assays to assess the relevance of these residues to protein function. We use the ligand binding domains of thyroid hormone receptor (TR) subtypes as a test case and find that conserved arginines, which are critical to TR transactivation function, are the most effective heat diffusers across the protein structure. These results suggest a hitherto unsuspected connection between a residue`s ability to mediate intramolecular vibrational energy redistribution and its functional relevance.
Resumo:
We prove that the symplectic group Sp(2n, Z) and the mapping class group Mod(S) of a compact surface S satisfy the R(infinity) property. We also show that B(n)(S), the full braid group on n-strings of a surface S, satisfies the R(infinity) property in the cases where S is either the compact disk D, or the sphere S(2). This means that for any automorphism phi of G, where G is one of the above groups, the number of twisted phi-conjugacy classes is infinite.
Resumo:
This presentation was offered as part of the CUNY Library Assessment Conference, Reinventing Libraries: Reinventing Assessment, held at the City University of New York in June 2014.
Resumo:
This Minor Field Study was carried out during November and December in 2011 in the Mount Elgon District in Western Kenya. The objective was to examine nine small-scale farming household´s land use and socioeconomic situation when they have joined a non-governmental organization (NGO) project, which specifically targets small-scale farming households to improve land use system and socioeconomic situation by the extension of soil and water conservation measures. The survey has worked along three integral examinations methods which are mapping and processing data using GIS, semi structured interviews and literature studies. This study has adopted a theoretical approach referred to as political ecology, in which landesque capital is a central concept. The result shows that all farmers, except one, have issues with land degradation. However, the extent of the problem and also implemented sustainable soil and water conservation measures were diverse among the farmers. The main causes of this can both be linked to how the farmers themselves utilized their farmland and how impacts from the climate change have modified the terms of the farmers working conditions. These factors have consequently resulted in impacts on the informants’ socioeconomic conditions. Furthermore it was also registered that social and economic elements, in some cases, were the causes of how the farmers manage their farmland. The farmer who had no significant problem with soil erosion had invested in trees and opportunities to irrigate the farmland. In addition, it was also recorded that certain farmers had invested in particular soil and water conservation measures without any significant result. This was probably due to the time span these land measures cover before they start to generate revenue. The outcome of this study has traced how global, national and local elements exist in a context when it comes to the conditions of the farmers´ land use and their socioeconomic situation. The farmers atMt.Elgon are thereby a component of a wider context when they are both contributory to their socioeconomic situation, mainly due to their land management, and also exposed to core-periphery relationships on which the farmers themselves have no influence.