997 resultados para Holes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Middle America active continental margin is the best-sampled active plate margin to date, having been drilled during Legs 84, 67, and 66. With nine sites drilled on the continental slope of Guatemala and an additional site drilled on the Costa Rican slope, a summary of slope sediments and sedimentary processes can be made. Sediments are easily subdivided into a thick apron of Neogene and Quaternary volcanically derived hemipelagic and turbidite mud and mudstone and a thinner, more varied assemblage of mostly Paleogene mudstone, radiolarian mudstone, and limestone. This latter assemblage may contain hiatuses or be completely lacking between slope deposits and basement. Cores from the foot of the continental slope (Core 567A-19) consist of Campanian micrite. The pre-Neogene section is much thicker and of more terrigenous provenance beneath the forearc basin landward of the forearc structural high than on the continental slope. Sedimentary processes of the Neogene and Quaternary slope sediments include reworking of hemipelagic and turbidite deposits. Redeposition by slumping, plastic flow, and turbidity current-documentable through benthic foraminiferal analysis-occurs in intracanyon and canyon settings. Erosion by slumping and by turbidity current and deposition of mud or sand in canyons and in local depressions on the continental slope and different rates of sediment accumulation result in dramatic thickness variations of lithologic units over small distances in localized pockets of sand in small filled canyons on the slope or in sediment ponds, and in high-relief basement topography. The age of sediment overlying igneous basement ranges from Cretaceous to Quaternary. Gas hydrate was visible or inferred present at every site drilled during Leg 84. Nevertheless, except for a small amount in the last core, it was not recovered in sufficient quantities to be visible at Site 568, a site specifically chosen for the study of hydrate and located near Site 496, which was abandoned during Leg 67 because of the dangerous abundance of hydrates. The association of hydrate with porous, coarser sediment results in a distribution as localized and unpredictable as the slope sands off Guatemala, which do not occur in beds coherent enough to produce acoustic reflection. Although the normal lithologic section at Sites 567 and 496 limits the volume of sediment that could be part of an accretionary prism offshore Guatemala and the volume of sediment in the Trench axis is not sufficient to argue for significant accumulation of Cocos Plate sediments, the varied lithology and attenuated thickness of pre-Neogene sediment seaward of the forearc structural high do not exclude earlier accretion from the history of the Guatemalan continental margin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Values of physical properties measured in the upper sections of sediment cores recovered at Sites 504 and 505 exhibit a remarkable similarity. Below a depth of 145 m Site 504 sediments appear to have undergone changes which are reflected in physical property values. This alteration may have been due to high temperatures in the sediment. In most of Site 505, and in Site 504 above 145 m, seismic velocity averages 1.51 km/s, wet bulk density 1.32 g/cm**3, porosity 80%, and thermal conductivity 0.80% W/m °K. Below 145 m at Site 504 and 210 m at Site 505, mean density increases to 1.40 g/cm**3, porosity decreases to 67%, seismic velocity increases to 1.53 km/s, and thermal conductivity increases to values in excess of 1.0 W/m °K. A good correlation between independent measurements of water content and thermal resistivity supports the existence of small but regular variation in the measured parameters on the scale of 10 m and less.