970 resultados para High-density WiFi
Resumo:
FBXL21 gene encodes an F-box containing protein functioning in the SCIP ubiquitin ligase complex. The role of the F-box protein is to recruit proteins designated for degradation to the ligase complex so they would be ubiquitinated. Using both family and case-control samples, we found consistent associations in and around FBXL21 gene. In the family sample (Irish study of high density schizophrenia families, ISHDSF, 1,350 subjects from 273 families), a minimal PDT P-value of 0.0011 was observed at rs31555. In the case-control sample (Irish case-control study of schizophrenia, ICCSS, 814 cases and 625 controls), significant associations were observed at two markers (rs1859427 P=0.0197, and rs6861170 P=0.0197). In haplotype analyses, haplotype 1-1 (C-T) of rs1859427-rs6861170 was overtransmitted in the ISHDSF (P=0.0437) and was over-represented in the ICCSS (P=0.0177). For both samples, the associated alleles and haplotypes were identical. These data suggested that FBXL21 maybe associated with schizophrenia in the Irish samples. (C) 2008 Wiley-Liss, Inc.
Resumo:
Prior family and adoption studies have suggested a genetic relationship between schizophrenia and schizotypy. However, this has never been verified using linkage methods. We therefore attempted to test for a correlation in linkage signals from genome-wide scans of schizophrenia and schizotypy. The Irish study of high-density schizophrenia families comprises 270 families with at least two members with schizophrenia or poor-outcome schizoaffective disorder (n = 637). Non-psychotic relatives were assessed using the structured interview for schizotypy (n = 746). A 10-cM multipoint, non-parametric, autosomal genomewide scan of schizophrenia was performed in Merlin. A scan of a quantitative trait comprising ratings of DSM-III-R criteria for schizotypal personality disorder in non-psychotic relatives was also performed. Schizotypy logarithm of the odds (LOD) scores were regressed onto schizophrenia LOD scores at all loci, with adjustment for spatial autocorrelation. To assess empirical significance, this was also carried out using 1000 null scans of schizotypy. The number of jointly linked loci in the real data was compared to distribution of jointly linked loci in the null scans. No markers were suggestively linked to schizotypy based on strict Lander Kruglyak criteria. Schizotypy LODs predicted schizophrenia LODs above chance expectation genome wide (empirical P = 0.04). Two and four loci yielded nonparametric LOD (NPLs) > 1.0 and > 0.75, respectively, for both schizophrenia and schizotypy (genome-wide empirical P = 0.04 and 0.02, respectively). These results suggest that at least a subset of schizophrenia susceptibility genes also affects schizotypy in non-psychotic relatives. Power may therefore be increased in molecular genetic studies of schizophrenia if they incorporate measures of schizotypy in non-psychotic relatives.
Resumo:
Two semianalytical relations [Nature, 1996, 381, 137 and Phys. Rev. Lett. 2001, 87, 245901] predicting dynamical coefficients of simple liquids on the basis of structural properties have been tested by extensive molecular dynamics simulations for an idealized 2:1 model molten salt. In agreement with previous simulation studies, our results support the validity of the relation expressing the self-diffusion coefficient as a Function of the radial distribution functions for all thermodynamic conditions such that the system is in the ionic (ie., fully dissociated) liquid state. Deviations are apparent for high-density samples in the amorphous state and in the low-density, low-temperature range, when ions condense into AB(2) molecules. A similar relation predicting the ionic conductivity is only partially validated by our data. The simulation results, covering 210 distinct thermodynamic states, represent an extended database to tune and validate semianalytical theories of dynamical properties and provide a baseline for the interpretation of properties of more complex systems such as the room-temperature ionic liquids.
Resumo:
We present mid-infrared (5.2-15.2 mu m) spectra of the Type Ia supernovae (SNe Ia) 2003hv and 2005df observed with the Spitzer Space Telescope. These are the first observed mid-infrared spectra of thermonuclear supernovae, and show strong emission from fine-structure lines of Ni, Co, S, and Ar. The detection of Ni emission in SN 2005df 135 days after the explosion provides direct observational evidence of high-density nuclear burning forming a significant amount of stable Ni in a SN Ia. The SN 2005df Ar lines also exhibit a two-pronged emission profile, implying that the Ar emission deviates significantly from spherical symmetry. The spectrum of SN 2003hv also shows signs of asymmetry, exhibiting blueshifted [Co (III)], which matches the blueshift of [Fe (II)] lines in nearly coeval near-infrared spectra. Finally, local thermodynamic equilibrium abundance estimates for the yield of radioactive Ni-56 give M-56Ni approximate to 0.5 M-circle dot, for SN 2003hv, but only M-56Ni approximate to 0.13-0.22 M-circle dot for the apparently subluminous SN 2005df, supporting the notion that the luminosity of SNe Ia is primarily a function of the radioactive 56Ni yield. The observed emission-line profiles in the SN 2005df spectrum indicate a chemically stratified ejecta structure, which matches the predictions of delayed detonation (DD) models, but is entirely incompatible with current three-dimensional deflagration models. Furthermore, the degree that this layering persists to the innermost regions of the supernova is difficult to explain even in a DD scenario, where the innermost ejecta are still the product of deflagration burning. Thus, while these results are roughly consistent with a delayed detonation, it is clear that a key piece of physics is still missing from our understanding of the earliest phases of SN Ia explosions.
Resumo:
We study the chemical evolution in the central core of contracting interstellar clouds. The chemical rate equations and the hydrodynamic equations are integrated simultaneously. The. contraction is followed from very low density (n = 10 cm(-3)) to a high-density core with n > 10(7) cm(-3). The chemical evolution is studied for various physical and chemical conditions, including the effects of varying the cosmic ray ionization rate, in order to understand the observed structures in TMC-1 and the extended ridge cloud in Orion. Our results give good agreement with the observations for models with fast ion-dipole reaction rates, low cosmic ray ionization rates and low depletion of N and S. It is also found that there should be different stages of evolution with different densities in these sources.
Resumo:
Observations of protonated HCN (HCNH+) in a selection of galactic molecular clouds are reported. This species plays a key role in understanding the chemistry of the important high density tracer HCN. HCNH+ has been detected in the nearby cold dust cloud TMC-1 with an ratio relative to HCN of [HCNH+]/[HCN] between 0.015 and 0.26 (preferred value 0.03) and tentatively in DR21(OH) with a ratio of approximately 0.01. This is about 100 times higher than the ratio of protonated carbon monoxide to CO [HCO+]/[CO], but comparable to the [HCS+]/[CS] ratio. Possible explanations of these high abundance ratios are discussed in the light of model calculations.
Resumo:
Background and purpose: The addition of gold nanoparticles (GNPs) to tumours leads to an increase in dose due to their high density and energy absorption coefficient, making it a potential radiosensitiser. However, experiments have observed radiosensitisations significantly larger than the increase in dose alone, including at megavoltage energies where gold's relative energy absorption is lowest. This work investigates whether GNPs create dose inhomogeneities on a sub-cellular scale which combine with non-linear dose dependence of cell survival to be the source of radiosensitisation at megavoltage energies.
Resumo:
We have demonstrated the promising radiation pressure acceleration (RPA) mechanism of laser-driven ion acceleration at currently achievable laser and target parameters through a large number of two-dimensional particle-in-cell simulations and experiments. High-density monoenergetic ion beams with unprecedented qualities such as narrow-peaked spectrum, lower-divergence and faster energy-scaling are obtained, compared with the conventional target normal sheath acceleration. The key condition for stable RPA from thin foils by intense circularly polarized lasers has been identified, under which the stable RPA regime can be extended from ultrahigh intensities > 10(22) W cm(-2) to a currently accessible range 10(20)-10(21) W cm(-2). The dependences of the RPA mechanism on laser polarization, intensity and on the target composition and areal density have been studied.
Resumo:
A unique in situ multiaxial deformation device has been designed and built specifically for simultaneous synchrotron small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) measurements. SAXS and WAXS patterns of high-density polyethylene (HDPE) and HDPE/clay nanocomposites were measured in real time during in situ multiaxial deformation at room temperature and at 55 degrees C. It was observed that the morphological evolution of polyethylene is affected by the existence of clay platelets as well as the deformation temperature and strain rate. Martensitic transformation of orthorhombic into monoclinic crystal phases was observed under strain in HDPE, which is delayed and hindered in the presence of clay nanoplatelets. From the SAXS measurements, it was observed that the thickness of the interlamellar amorphous region increased with increasing strain, which is due to elongation of the amorphous chains. The increase in amorphous layer thickness is slightly higher for the nanocomposites compared to the neat polymer. (C) 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 669-677, 2011
Resumo:
We have studied a solid-to-plasma transition by irradiating Al foils with the FLASH free electron laser at intensities up to 10(16) W/cm(2). Intense XUV self-emission shows spectral features that are consistent with emission from regions of high density, which go beyond single inner-shell photoionization of solids. Characteristic features of intrashell transitions allowed us to identify Auger heating of the electrons in the conduction band occurring immediately after the absorption of the XUV laser energy as the dominant mechanism. A simple model of a multicharge state inverse Auger effect is proposed to explain the target emission when the conduction band at solid density becomes more atomiclike as energy is transferred from the electrons to the ions. This allows one to determine, independent of plasma simulations, the electron temperature and density just after the decay of crystalline order and to characterize the early time evolution.
Resumo:
Tetrahexahedral Pt nanocrystals (THH Pt NCs) bound by well-defined high index crystal planes offer exceptional electrocatalytic activity, owing to a high density of low-coordination surface Pt sites. We report, herein, on methanol electrooxidation at THH Pt NC electrodes studied by a combination of electrochemical techniques and in situ FTIR spectroscopy. Pure THH Pt NC surfaces readily facilitate the dissociative chemisorption of methanol leading to poisoning by strongly adsorbed CO. Decoration of the stepped surfaces by Ru adatoms increases the tolerance to poisoning and thereby reduces the onset potential for methanol oxidation by over 100 mV. The Ru modified THH Pt NCs exhibit greatly superior catalytic currents and CO2 yields in the low potential range, when compared with a commercial PtRu alloy nanoparticle catalyst. These results are of fundamental importance in terms of model nanoparticle electrocatalytic systems of stepped surfaces and also have practical significance in the development of surface tailored, direct methanol fuel cell catalysts.
Resumo:
Lasing properties of a collisional-excitation Ne-like Ge soft-x-ray laser have been studied with exploding-foil, single-slab, and double-slab targets under identical pumping conditions. Experimental results for the angular intensity distributions and the temporal variations of the lasing intensities are examined with a hydrodynamic code and ray-trace calculations. The observed angular distribution are well reproduced by these analyses, and it is found that the effective gain regions are located on the high-density side of the expected gain regions. It is shown that the observed lasing intensity of the J = 0 to J = 1 line is strongly correlated with the temporal change of the calculated electron temperature for both the slab and the exploding-foil targets.
Resumo:
Protons with energies up to 18 MeV have been measured from high density laser-plasma interactions at incident laser intensities of 5 X 10(19) W/cm(2). Up to 10(12) protons with energies greater than 2 MeV were observed to propagate through a 125 mu m thick aluminum target and measurements of their angular deflection were made. It is likely that the protons originate from the front surface of the target and are bent by large magnetic fields which exist in the target interior. To agree with our measurements these fields would be in excess of 30 MG and would be generated by the beam of fast electrons which is also observed.
Resumo:
We have developed a PW (0.5 ps/500J) laser system to demonstrate fast heating of imploded core plasmas using a hollow cone shell target. Significant enhancement of thermal neutron yield has been realized with PW-laser heating, confirming that the high heating efficiency is maintained as the short-pulse laser power is substantially increased to a value nearly equivalent to the ignition condition. It appears that the efficient heating is realized by the guiding of the PW laser pulse energy within the hollow cone and by self-organized relativistic electron transport. Based on the experimental results, we are developing a 10kJ-PW laser system to study the fast heating physics of high-density plasmas at an ignition-equivalent temperature.
Resumo:
The spatial and temporal evolution of spontaneous megagauss magnetic fields, generated during the interaction of a picosecond pulse with solid targets at irradiances above 5 x 10(18) W/cm(2) have been measured using Faraday rotation with picosecond resolution. A high density plasma jet has been observed simultaneously with the magnetic fields by interferometry and optical emission. Two-dimensional magnetohydrodynamic simulations reproduced the main features of the experiment and showed that the jet formation is due to pinching by the magnetic fields.