945 resultados para High temperature materials


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three dimensional (3D) composites are strong contenders for the structural applications in situations like aerospace,aircraft and automotive industries where multidirectional thermal and mechanical stresses exist. The presence of reinforcement along the thickness direction in 3D composites,increases the through the thickness stiffness and strength properties.The 3D preforms can be manufactured with numerous complex architecture variations to meet the needs of specific applications.For hot structure applications Carbon-Carbon(C-C) composites are generally used,whose property variation with respect to temperature is essential for carrying out the design of hot structures.The thermomechanical behavior of 3D composites is not fully understood and reported.The methodology to find the thermomechanical properties using analytical modelling of 3D woven,3D 4-axes braided and 3D 5-axes braided composites from Representative Unit Cells(RUC's) based on constitutive equations for 3D composites has been dealt in the present study.High Temperature Unidirectional (UD) Carbon-Carbon material properties have been evaluated using analytical methods,viz.,Composite cylinder assemblage Model and Method of Cells based on experiments carried out on Carbon-Carbon fabric composite for a temparature range of 300 degreeK to 2800degreeK.These properties have been used for evaluating the 3D composite properties.From among the existing methods of solution sequences for 3D composites,"3D composite Strength Model" has been identified as the most suitable method.For thegeneration of material properies of RUC's od 3D composites,software has been developed using MATLAB.Correlaton of the analytically determined properties with test results available in literature has been established.Parametric studies on the variation of all the thermomechanical constants for different 3D performs of Carbon-Carbon material have been studied and selection criteria have been formulated for their applications for the hot structures.Procedure for the structural design of hot structures made of 3D Carbon-Carbon composites has been established through the numerical investigations on a Nosecap.Nonlinear transient thermal and nonlinear transient thermo-structural analysis on the Nosecap have been carried out using finite element software NASTRAN.Failure indices have been established for the identified performs,identification of suitable 3D composite based on parametric studies on strength properties and recommendation of this material for Nosecap of RLV based on structural performance have been carried out in this Study.Based on the 3D failure theory the best perform for the Nosecap has been identified as 4-axis 15degree braided composite.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Measurements of dc conductivity and dielectric constant show that deuteration causes an upward shift of the high temperature phase transition point from 186.5 to 191°C and a downward shift of the low temperature transition point from 10 to -1.5°C in LiNH4SO4. Mechanisms of phase transitions and of electrical transport in the crystal are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A detailed study of the blends of ethylene-propylene-diene rubber (EPDM) and chlorobutyl rubber (CIIR) is proposed in this study. These blends may find application in the manufacture of curing diaphragms/curing envelopes for tire curing applications. EPDM possesses better physical properties such as high heat resistance, ozone resistance, cold and moisture resistance, high resistance to permanent defonnation, very good resistance to flex cracking and impact. Because of the low gas and moisture penneability, good weathering resistance and high thermal stability of CIIR, blends of EPDM with CIlR may be attractive, if sufficient mechanical strength can be developed. Although a lot of work has been done on elastomer blends, studies on the blends of EPDM and CIIR rubbers are meagre. Hence in this investigation it is proposed to make a systematic study on the characteristics of EPDM and CIIR rubber blends.The mechanical and physical properties of an elastomer blend depend mainly on the blend compatibility. So in the first part of the study, it is proposed to develop compatible blends of EPDM with CIIR. Various commercial grades of ethylenepropylene- diene rubber are proposed to be blended with a specific grade of chlorobutyl rubber at varying proportions. The extent of compatibility in these blends is proposed to be evaluated based on their mechanical properties such as tensile strength, tear strength and ageing resistance. In addition to the physical property measurements, blend compatibility is also proposed to be studied based on the glass transition behavlour of the blends in relation to the Tg's of the individual components using Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The phase morphology of the blends is also proposed to be investigated by Scanning Electron Microscopy (SEM) studies of the tensile fracture surfaces. In the case of incompatible blends, the effect of addition of chlorosulfonated polyethylene as a compatibiliser is also proposed to be investigated.In the second part of the study, the effect of sulphur curing and resin curing on the curing behaviour and the vulcanizate properties of EPDM/CIIR blends are planned to be evaluated. Since the properties of rubber vulcanizates are determined by their network structures, it is proposed to determine the network structure of the vulcanizates by chemical probes so as to correlate it with the mechanical properties.In the third part of the work, the effect of partial precuring of one of the components prior to blending as a possible means of improving the properties of the blend is proposed to be investigated. This procedure may also help to bring down the viscosity mismatch between the constituent e1astomers and provide covulcanization of the blend.The rheological characteristics and processability of the blends are proposed to be investigated in the last part of the study. To explore their possible applications, the air permeability of the blend samples at varying temperatures is proposed to be measured. The thermal diffusivity behaviour of EPDM/CIlR blends is also proposed to be investigated using novel laser technique. The thermal diffusivity of the blends along with the thermal degradation resistance may help to determine whether the blends are suitable for high temperature applications such as in the manufacturing of curing envelope.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of the investigation is to develop new high performance adhesive systems based on neoprene-phenolic blends. Initially the effect of addition of all possible ingredients like fillers, adhesion promoters, curing agents and their optimum compositions to neoprene solution is investigated. The phenolic resin used is a copolymer of phenol-cardanolformaldehyde prepared in the laboratory. The optimum ratio between phenol and cardanol that gives the maximum bond strength in metal-metal, rubber-rubber and rubber-metal specimens has been identified. Further the ratio between total phenols and formaldehyde is also optimised. The above adhesive system is further modified by the addition of epoxidized phenolic novolacs. For this purpose, phenolic novolac resins are prepared in different stoichiometric ratios and are subsequently epoxidized. The effectiveness of the adhesive for bonding different metal and rubber substrates is another part of the study. To study the ageing behaviour, different bonded specimens are exposed to high temperature, hot water and salt water and adhesive properties have been evaluated. The synthesized resins have been characterized by FTIR , HNMR spectroscopy. The molecular weights of the resins have been obtained by GPC. Thermogravimetric analysis and differential scanning calorimetry are used to study the thermal properties. The fractured surface analysis is studied by scanning electron microscopy. The study has brought to light the influence of phenol/ formaldehyde stoichiometric ratio, addition of cardanol (a renewable resource), adhesion promoters and suitability of the adhesive for different substrates and the age resistance of adhesive joints among other things.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High energy materials are essential ingredients in both rocket and explosive formulations. These can be vulnerable due to maltreatment. During gulf war, several catastrophic accidents have been reported from their own payload munitions. The role of energetic binders here was to wrap the explosive formulations to convert it into insensitive munitions. With the aid of energetic binders, the explosive charges are not only protected from tragic accidents due to fire, bullet impact, adjacent detonation, unplanned transportation, but also form total energy output presumption. The use of energetic binders in rocket propellants and explosive charges has been increased after the Second World War. Inert binders in combination with energetic materials, performed well as binders but they diluted the final formulation. Obviously the total energy output was reduced. Currently, the research in the field of energetic polymers is an emerging area, since it plays crucial role in insensitive munitions. The present work emphasises on the synthesis and characterization of oxetanes, oxiranes and polyphosphazene based energetic polymers. The thesis is structured into six chapters. First part of chapter 1 deals with brief history of energetic polymers. The second part describes a brief literature survey of energetic polymers based on oxetanes and oxiranes. Third and fourth parts deal with energetic plasticizers and energetic polyphosphazenes. Finally, the fifth part deals with the various characterization techniques adopted for the current study and sixth part includes objectives of the present work.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Engyodontium album isolated from marine sediment produced protease, which was active at pH 11. Process parameters influencing the production of alkaline protease by marine E. album was optimized. Particle size of <425 mm, 60% initial moisture content and incubation at 25 8C for 120 h were optimal for protease production under solid state fermentation (SSF) using wheat bran. The organism has two optimal pH (5 and 10) for maximal enzyme production. Sucrose as carbon source, ammonium hydrogen carbonate as additional inorganic nitrogen source and amino acid leucine enhanced enzyme production during SSF. The protease was purified and partially characterized. A 16-fold purified enzyme was obtained after ammonium sulphate precipitation and ion-exchange chromatography. Molecular weight of the purified enzyme protein was recorded approximately 38 kDa by SDS-PAGE. The enzyme showed maximum activity at pH 11 and 60 8C. Activity at high temperature and high alkaline pH suggests suitability of the enzyme for its application in detergent industry

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fish and fishery products are having a unique place in global food market due to its unique taste and flavour; moreover, the presence of easily digestible proteins, lipids, vitamins and minerals make it a highly demanded food commodity.Fishery products constitute a major portion of international trade, which is a valuable source of foreign exchange to many developing countries.Several new technologies are emerging to produce various value added products from food; “extrusion technology” is one among them. Food extruder is a better choice for producing a wide variety of high value products at low volume because of its versatility. Extruded products are shelf-stable at ambient temperature. Extrusion cooking is used in the manufacture of food products such as ready-to-eat breakfast cereals, expanded snacks, pasta, fat-bread, soup and drink bases. The raw materialin the form of powder at ambient temperature is fed into extruder at a known feeding rate. The material first gets compacted and then softens and gelatinizes and/or melts to form a plasticized material, which flows downstream into extruder channel and the final quality of the end products depends on the characteristics of starch in the cereals and protein ingredient as affected by extrusion process. The advantages of extrusion process are the process is thermodynamically most efficient, high temperature short time enables destruction of bacteria and anti-nutritional factors, one step cooking process thereby minimizing wastage and destruction of fat hydrolyzing enzymes during extrusion process and enzymes associated with rancidity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die technischen Oberflächen werden oft als Bauteilversagungsorte definiert. Deswegen ist eine optimale Ausnutzung der Werkstoffeigenschaften ohne mechanische Oberflächenbehandlungsverfahren nicht mehr wegzudenken. Mechanische Randschichtoptimierungsverfahren sind vergleichsweise einfach, Kosten sparend und hocheffektiv. Gerade das Festwalzen wird wegen seiner günstigen Auswirkungen wie die exzellente Oberflächengüte, die hohen Druckeigenspannungen sowie die hohe Oberflächenverfestigung zunehmend an Bedeutung gewinnen. Außerdem wird durch das Festwalzen in einigen Legierungen eine nanokristalline Oberflächenschicht gebildet. Diese brillanten Eigenschaften führen nach einer mechanischen Oberflächenbehandlung zur Erhöhung des Werkstoffwiderstandes unter anderem gegen Verschleiß, Spannungsrisskorrosion und insbesondere zur Steigerung der Schwingfestigkeit. Ein etabliertes Beispiel zur Steigerung der Schwingfestigkeit ist das Festwalzen von Achsen und Kurbelwellen. Auch solche komplexen Komponenten wie Turbinenschaufeln werden zur Schwingfestigkeitssteigerung laserschockverfestigt oder festgewalzt. Die Laserschockverfestigung ist ein relativ neues Verfahren auf dem Gebiet der mechanischen Oberflächenbehandlungen, das z.B. bereits in der Flugturbinenindustrie Anwendung fand und zur Schwingfestigkeitsverbesserung beiträgt. Das Verfahrensprinzip besteht darin, dass ein kurzer Laserimpuls auf die zu verfestigende, mit einer Opferschicht versehene Materialoberfläche fokussiert wird. Das Auftreffen des Laserimpulses auf der verwendeten Opferschicht erzeugt ein expandierendes Plasma, welches eine Schockwelle in randnahen Werkstoffbereichen erzeugt, die elastisch-plastische Verformungen bewirkt. Eine konsekutive Wärmebehandlung, Auslagerung nach dem Festwalzen, nutzt den statischen Reckalterungseffekt. Hierdurch werden die Mikrostrukturen stabilisiert. Die Änderung der Mikrostrukturen kann jedoch zu einer beträchtlichen Abnahme der mittels Festwalzen entstandenen Druckeigenspannungen und der Kaltverfestigungsrate führen. Das Festwalzen bei erhöhter Temperatur bietet eine weitere Möglichkeit die Schwingfestigkeit von metallischen Werkstoffen zu verbessern. Die Mikrostruktur wird durch den Effekt der dynamischen Reckalterung stabilisiert. Die Effekte beim Festwalzen bei erhöhten Temperaturen sind ähnlich dem Warmstrahlen. Das Festwalzen erzeugt Oberflächenschichten mit sehr stabilen Kaltverfestigungen und Druckeigenspannungen. Diese Strukturen haben viele Vorteile im Vergleich zu den durch rein mechanische Verfahren erzeugten Strukturen in Bezug auf die Schwingfestigkeit und die Stabilität der Eigenspannungen. Die Aufgabe der vorliegenden Dissertation war es, Verfahren zur Verbesserung der Schwingfestigkeit im Temperaturbereich zwischen Raumtemperatur und 600 °C zu erforschen. Begleitende mikrostrukturelle sowie röntgenographische Untersuchungen sollen zum Verständnis der Ursachen der Verbesserung beitragen. Für diese Arbeit wurde der in der Praxis häufig verwendete Modellwerkstoff X5CrNi18-10 ausgewählt. Als Randschichtverfestigungsverfahren wurden das Festwalzen, eine Kombination der mechanischen und thermischen, thermomechanischen Verfahren auf der Basis des Festwalzens und eine Laserschockverfestigung verwendet.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Insoluble calcium salts were added to milk to increase total calcium by 30 mM, without changing properties influencing heat stability, such as pH and ionic calcium. There were no major signs of instability associated with coagulation, sediment formation or fouling when subjected to ultra high temperature (UHT) and in-container sterilisation. The buffering capacity was also unaltered. On the other hand, addition of soluble calcium salts reduced pH, increased ionic calcium and caused coagulation to occur. Calcium chloride showed the largest destabilising effect, followed by calcium lactate and calcium gluconate. Milk became unstable to UHT processing at lower calcium additions compared to in-container sterilisation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The importance of temperature in the determination of the yield of an annual crop (groundnut; Arachis hypogaea L. in India) was assessed. Simulations from a regional climate model (PRECIS) were used with a crop model (GLAM) to examine crop growth under simulated current (1961-1990) and future (2071-2100) climates. Two processes were examined: the response of crop duration to mean temperature and the response of seed-set to extremes of temperature. The relative importance of, and interaction between, these two processes was examined for a number of genotypic characteristics, which were represented by using different values of crop model parameters derived from experiments. The impact of mean and extreme temperatures varied geographically, and depended upon the simulated genotypic properties. High temperature stress was not a major determinant of simulated yields in the current climate, but affected the mean and variability of yield under climate change in two regions which had contrasting statistics of daily maximum temperature. Changes in mean temperature had a similar impact on mean yield to that of high temperature stress in some locations and its effects were more widespread. Where the optimal temperature for development was exceeded, the resulting increase in duration in some simulations fully mitigated the negative impacts of extreme temperatures when sufficient water was available for the extended growing period. For some simulations the reduction in mean yield between the current and future climates was as large as 70%, indicating the importance of genotypic adaptation to changes in both means and extremes of temperature under climate change. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tolerance to high soil and air temperature during the reproductive phase is an important component of adaptation to and and semi-arid cropping environments in groundnut. Between 10 and 22 genotypes were screened for tolerance to high air and soil temperature in controlled environments. To assess tolerance to high soil temperature, 10 genotypes were grown from start of podding to harvest at ambient (28 degrees) and high (38 degreesC) soil temperatures, and crop growth rate (CGR), pod growth rate (PGR) and partitioning (ratio PGR:CGR) measured. To assess tolerance to high air temperature during two key stages-microsporogenesis (3-6 days before flowering, DBF) and flowering, fruit-set was measured in two experiments. In the first experiment, 12 genotypes were exposed to short (3-6 days) episodes of high (38 degreesC) day air temperature at 6 DBF and at flowering. In the second experiment, 22 genotypes were exposed to 40 degreesC day air temperature for I day at 6 DBF, 3 DBF or at flowering. Cellular membrane thermostability (relative injury, RI) was also measured in these 22 genotypes. There was considerable variation among genotypes in response to high temperature, whether assessed by growth rates, fruit-set or RI. Pod weight at high soil temperature was associated with variation in CGR rather than partitioning. Flowering was more sensitive to high air temperature than microsporogenesis. Genotypes tolerant to high air temperature at microsporogenesis were not necessarily tolerant at flowering, and nor was tolerance correlated with RI. Six genotypes (796, 55-437, ICG 1236, ICGV 86021, lCGV 87281 and ICGV 92121) were identified as heat tolerant based on their performance in all tests. These experiments have shown that groundnut genotypes can be easily screened for reproductive tolerance to high air and soil temperature and that several sources of heat tolerance are available in groundnut germplasm. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Seed set of rice (Oryza sativa L.) is highly sensitive to short episodes of high temperature at anthesis events that are likely to be more frequent in future climates. Breeding for tolerance is therefore an essential component of adaptation to climate variability and change. Experiments were conducted in 2003 and 2004 at optimum (30 degrees C daytime) and high (35 and 38 degrees C) air temperature using parents of some prominent mapping populations (i) to determine whether there were differences in the daily flowering pattern and hence a potential heat avoidance mechanism, and (ii) to identify rice genotypes having true heat tolerance during anthesis, that is, high seed set in spikelets exposed to high temperature. Rice cultivar CG14 (O. glaberrima) reached peak anthesis earlier in the morning (1.5 h after dawn) under both control (30 degrees C) and high (38 degrees C) temperature conditions than O. sativa genotypes (>= 3 h after dawn). Exposure to high temperature (centered on the time of peak anthesis) for 6 h reduced spikelet fertility more than exposure for 2 h, and fertility was lower at 38 degrees C than at 35 degrees C. Genotypic ranking for spikelet fertility at 35 and 38 degrees C was highly correlated in both 2003 and 2004. Fertility was also highly correlated across years, suggesting a consistent and reproducible response of spikelet fertility to temperature. The check cultivar N22 was the most heat tolerant genotype (64-86% fertility at 38 degrees C) and cultivars Azucena and Moroberekan the most susceptible (<8%).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Temperature regimes that induce and ameliorate cropping troughs ("thermodormancy") were evaluated over two seasons for the everbearing strawberry 'Everest'. When plants were exposed to 26 degrees C for 5, 10, 20 or 30 d in July, heat-induced troughs in cropping were observed in August. An important discovery was that cool (13 degrees C) night temperatures ameliorated the severity of thermodormancy. In this study, thermodormancy appeared to be due principally to flower abortion post-anthesis, as large numbers of flowers emerged in mid-July, during the high temperature treatments, but went on to produce low fruit numbers in mid-August. Flower initiation itself (monitored by crown dissection) was not reduced by high temperatures. The observation that night-time temperature is critical for thermodormancy has significance for commercial production, in which protected cropping tends to increase average temperatures throughout the season, and venting tends to focus on day-time temperatures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Here we describe results which teach us much about the mechanism of the reduction and oxidation of TiO2(110) by the application of scanning tunnelling microscopy imaging at high temperatures. Titania reduces at high temperature by thermal oxygen loss to leave localized (i.e. Ti3+) and delocalized electrons on the lattice Ti, and a reduced titania interstitial that diffuses into the bulk of the crystal. The interstitial titania can be recalled to the surface by treatment in very low pressures of oxygen, occurring at a significant rate even at 573 K. This re-oxidation occurs by re-growth of titania layers in a Volmer-Weber manner, by a repeating sequence in which in-growth of extra titania within the cross-linked (1 x 2) structure completes the (1 x 1) bulk termination. The next layer then initiates with the nucleation of points and strings which extend to form islands of cross-linked (1 x 2), which once again grow and fill in to reform the (1 x 1). This process continues in a cyclical manner to form many new layers of well-ordered titania. The details of the mechanism and kinetics of the process are considered.