996 resultados para Heavy particles (Nuclear physics)
Resumo:
We use the CP trajectory diagram as a tool for pictorial representation of the genuine CP and the matter effects to explore the possibility of an in situ simultaneous measurement of δ and the sign of Δℳ13 2. We end up with a low-energy conventional superbeam experiment with a megaton-class water Cherenkov detector and baseline length of about 700 km. A picturesque description of the combined ambiguity which may arise in simultaneous determination of θ13 and the above two quantities is given in terms of CP trajectory diagram.
Resumo:
We introduce and study new integrable models (IMs) of An (1)-nonabelian Toda type which admit U(1) ⊗ U(1) charged topological solitons. They correspond to the symmetry breaking SU(n + 1) → SU(2) ⊗ SU(2) ⊗ U(1)n-2 and are conjectured to describe charged dyonic domain walls of N = 1 SU(n + 1) SUSY gauge theory in large n limit. It is shown that this family of relativistic IMs corresponds to the first negative grade q = -1 member of a dyonic hierarchy of generalized cKP type. The explicit relation between the 1-soliton solutions (and the conserved charges as well) of the IMs of grades q = -1 and q = 2 is found. The properties of the IMs corresponding to more general symmetry breaking SU(n + 1) → SU(2)⊗p ⊗ U(1)n-p as well as IM with global SU(2) symmetries are discussed. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Pion virtual compton scattering (VCS) via the reaction π-e→π-eγ was observed in the Fermilab E781 SELEX experiment. SELEX used a 600 GeV/c π- beam incident on target atomic electrons, detecting the incident π- and the final state π-, electron and γ. Theoretical predictions based on chiral perturbation theory are incorporated into a Monte Carlo simulation of the experiment and are compared to the data. The number of reconstructed events (=9) and their distribution with respect to the kinematic variables (for the kinematic region studied) are in reasonable accord with the predictions. The corresponding π- VCS experimental cross section is σ=38.8±13 nb, in agreement with the theoretical expectation of σ=34.7 nb.
Resumo:
We derive the equation of state of nuclear matter for the quark-meson coupling model taking into account quantum fluctuations of the σ meson as well as vacuum polarization effects for the nucleons. This model incorporates explicitly quark degrees of freedom with quarks coupled to the scalar and vector mesons. Quantum fluctuations lead to a softer equation of state for nuclear matter giving a lower value of incompressibility than would be reached without quantum effects. The in-medium nucleon and σ-meson masses are also calculated in a self-consistent manner. The spectral function of the σ meson is calculated and the σ mass has the value increased with respect to the purely classical approximation at high densities.
Resumo:
The effects of opacity of the nuclei together with a blackbody type of emission along the system history are considered as a means to explain the ratio Rout/Rsid observed by STAR and PHENIX collaborations at RHIC. Within our model, no flow is required to explain the data trend of this ratio for large surface emissivities. © 2003 Elsevier Science B.V. All rights reserved.
Resumo:
In this work we study the warm equation of state of asymmetric nuclear matter in the quark-meson coupling model which incorporates explicitly quark degrees of freedom, with quarks coupled to scalar, vector, and isovector mesons. Mechanical and chemical instabilities are discussed as a function of density and isospin asymmetry. The binodal section, essential in the study of the liquid-gas phase transition is also constructed and discussed. The main results for the equation of state are compared with two common parametrizations used in the nonlinear Walecka model and the differences are outlined.
Resumo:
Supersymmetry is formulated for integrable models based on the sl(2 1) loop algebra endowed with a principal gradation. The symmetry transformations which have half-integer grades generate supersymmetry. The sl(2 1) loop algebra leads to N=2 supersymmetric mKdV and sinh-Gordon equations. The corresponding N=1 mKdV and sinh-Gordon equations are obtained via reduction induced by twisted automorphism. Our method allows for a description of a non-local symmetry structure of supersymmetric integrable models. © 2003 Elsevier B.V. All rights reserved.
Resumo:
After constructing a BRST operator from the fermionic Green-Schwarz constraints and a bosonic pure spinor ghost variable, the superstring is covariantly quantized and N-point tree amplitudes are computed in a manifestly ten-dimensional super-Poincaré covariant manner. © 2004 Published by Elsevier B.V.
Resumo:
We consider a scalar field theory on AdS, and show that the usual AdS/CFT prescription is unable to map to the boundary a part of the information arising from the quantization in the bulk. We propose a solution to this problem by defining the energy of the theory in the bulk through the Noether current corresponding to time displacements, and, in addition, by introducing a proper generalized AdS/CFT prescription. We also show how this extended formulation could be used to consistently describe double-trace interactions in the boundary. The formalism is illustrated by focusing on the non-minimally coupled case using Dirichlet boundary conditions. © 2004 Published by Elsevier B.V.
Resumo:
It is demonstrated that measurements of photon asymmetry in the γn → K-K+n reaction, can most likely determine the parity of the newly discovered Θ+ pentaquark. We predict that if the parity of Θ+ is positive, the photon asymmetry is significantly positive; if the parity is negative, the photon asymmetry is significantly negative. If the background contribution is large, the photon asymmetry may become very small in magnitude, thereby making it difficult to distinguish between the positive and negative parity results. However, even in this case, a combined analysis of the (K+n) invariant mass distribution and photon asymmetry should allow a determination of the parity of Θ+. © 2004 Published by Elsevier B.V.
Resumo:
The transition levels at the top of the two Np237 fission barriers were obtained for the first time by means of the so-called semimicroscopic combined method, which we have developed and implemented. To overcome the difficulties in dealing with large nuclear deformations, we used our developed BARRIER code, which calculates single-particle spectra in a deformed Woods-Saxon potential using a coordinate system based on Cassini ovaloids as nuclear shape parametrization. The results enabled us to describe the experimentally observed near-barrier photofission cross-section structures for Np237, as well as a subbarrier shelf, the latter being consistently interpreted in terms of the accumulation of levels at the top of the inner and outer double fission barrier of Np237. © 2006 The American Physical Society.
Resumo:
A comprehensive analysis of electrodisintegration yields of protons on Zr90 is proposed taking into account the giant dipole resonance, isovector giant quadrupole resonance (IVGQR), and quasideuteron contributions to the total photoabsorption cross section from 10 to 140 MeV. The calculation applies the MCMC intranuclear cascade to address the direct and pre-equilibrium emissions and another Monte Carlo-based algorithm to describe the evaporation step. The final results of the total photoabsorption cross section for Zr90 and relevant decay channels are obtained by fitting the (e,p) measurements from the National Bureau of Standards and show that multiple proton emissions dominate the photonuclear reactions at higher energies. These results provide a consistent explanation for the exotic and steady increase of the (e,p) yield and also a strong evidence of a IVGQR with a strength parameter compatible with the E2 energy-weighted sum rule. The inclusive photoneutron cross sections for Zr90 and natZr, derived from these results and normalized with the (e,p) data, are in agreement within 10% with both Livermore and Saclay data up to 140 MeV. © 2007 The American Physical Society.
Resumo:
Among other things, the pure spinor formalism has been used to rederive some particular superstring scattering amplitudes in the last few years. I will briefly review how the computations were done and show that the kinematical factors of these amplitudes can be simply written as integrals in a pure spinor superspace. © 2007 Elsevier B.V. All rights reserved.
Resumo:
Biometrics is one of the biggest tendencies in human identification. The fingerprint is the most widely used biometric. However considering the automatic fingerprint recognition a completely solved problem is a common mistake. The most popular and extensively used methods, the minutiae-based, do not perform well on poor-quality images and when just a small area of overlap between the template and the query images exists. The use of multibiometrics is considered one of the keys to overcome the weakness and improve the accuracy of biometrics systems. This paper presents the fusion of a minutiae-based and a ridge-based fingerprint recognition method at rank, decision and score level. The fusion techniques implemented leaded to a reduction of the Equal Error Rate by 31.78% (from 4.09% to 2.79%) and a decreasing of 6 positions in the rank to reach a Correct Retrieval (from rank 8 to 2) when assessed in the FVC2002-DB1A database. © 2008 IEEE.