884 resultados para Heat Treatment
Resumo:
Fertility in female mammals may be affected by a variety of endocrine disrupters present in the environment. Herbicide atrazine is an example of endocrine disrupter employed in agriculture, which disrupts estrous cyclicity in rats. Aiming to characterize morphologically the effect of low and sublethal doses of atrazine on the ovaries of Wistar rats, in an effort to determine the possible intrafollicular target site through which this herbicide acts adult females were submitted to both subacute and subchronic treatments. Additionally, immunocytochemical labeling of 90 kDa heat shock protein (HSP90) was performed in order to evaluate the role played by this protein in the ovary, under stressed conditions induced by herbicide exposure. The results indicated that atrazine induced impaired folliculogenesis, increased follicular atresia and HSP90 depletion in female rats submitted to subacute treatment, while the subchronic treatment with low dose of atrazine could compromise the reproductive capacity reflected by the presence of multioocytic follicle and stress-inducible HSP90. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated the effect of denture base polymer type (heat- and microwave-polymerized), ridge lap surface treatment (with and without methyl methacrylate-MMA etching) and thermocycling on the microtensile bond strength (mTBS) of Biotone acrylic teeth. Flat-ground, ridge-lap surface of posterior artifcial teeth were bonded to cylinders of each denture base resin, resulting in the following groups (n=6): G1a - Clássico/with MMA etching; G1b - Clássico/without MMA etching; G2a - OndaCryl/with MMA etching; G2b - OndaCryl/without MMA etching. Rectangular bar specimens with a cross-sectional area of 1 mm 2 were prepared. Half of the bars in each group were thermocycled (5,000 cycles between 4°C and 60°C). mTBS testing was performed in an universal testing machine at a crosshead speed of 0.5 mm/min. Data were analyzed statistically by three-way ANOVA (a=0.05). There was no statisti-caly signifcant difference (p>0.05) for the factors (resin, surface treatment,and thermocycling) or their interactions. The mean mTBS values (MPa) and standard deviations were as follows: Thermocycling - G1a: 41.00 (14.00); G1b: 31.00 (17.00); G2a: 50.00 (27.00); G2b: 40.00 (18.00); No thermocycling - G1a: 37.00 (14.00); G1b: 43.00 (25.00); G2a: 43.00 (14.00); G2b: 40.00 (27.00). The mTBS of Biotone artifcial teeth to the denture base acrylic resins was not infuenced by the polymer type, surface treatment or thermocycling.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: To evaluate the shear bond strength and bond durability between a dual-cured resin cement (RC) and a high alumina ceramic (In-Ceram Alumina), subjected to two surface treatments. Materials and Methods: Forty disc-shaped specimens (sp) (4-mm diameter, 5-mm thick) were fabricated from In-Ceram Alumina and divided into two groups (n = 20) in accordance with surface treatment: (1) sandblasting by aluminum oxide particles (50 μm Al 2O 3) (SB) and (2) silica coating (30 μm SiO x) using the CoJet system (SC). After the 40 sp were bonded to the dual-cured RC, they were stored in distilled water at 37°C for 24 hours. After this period, the sp from each group were divided into two conditions of storage (n = 10): (a) 24 h-shear bond test 24 hours after cementation; (b) Aging-thermocycling (TC) (12,000 times, 5 to 55°C) and water storage (150 days). The shear test was performed in a universal test machine (1 mm/min). Results: ANOVA and Tukey (5%) tests noted no statistically significant difference in the bond strength values between the two surface treatments (p= 0.7897). The bond strengths (MPa) for both surface treatments reduced significantly after aging (SB-24: 8.2 ± 4.6; SB-Aging: 3.7 ± 2.5; SC-24: 8.6 ± 2.2; SC-Aging: 3.5 ± 3.1). Conclusion: Surface conditioning using airborne particle abrasion with either 50 μm alumina or 30 μm silica particles exhibited similar bond strength values and decreased after long-term TC and water storage for both methods. © 2011 by The American College of Prosthodontists.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In tropical climates the heat is one of the major constraints to production of broilers and is responsible for inducing a high mortality, especially in the finishing phase. Thus, the objective of this study was to compare the thermal conditioning early (TC) and feed formulation using dietary electrolytes (DE). Therefore, the electrolyte balance of K+Na-Cl was set at 350 mEq/kg and electrolyte ratio (K+Cl)/Na) in the 3:1 program PPFR (http://www.fmva.unesp.br/ppfr). A total of 300 Cobb 500 1-dold male broiler chicks was randomly allocated to 24 floor pens with six replicates per treatment in a 2x2 factorial arrangement (with and without TC and with and without DE). Dietary treatments consisted: (T1) a traditional diet without TC; (T2) traditional diet with TC; (T3) with the application of dietary electrolyte and without TC and (T4) application of dietary electrolyte with TC. The thermal conditioning was conducted at 5 d of age (36°C for 24 h), only half of the batch (150 birds). After this period, all birds were transferred to boxes of 1.5 x3m (12 birds / box), with wood shavings reused as litter. Chicks were exposed to acute stress (36°C) for 8 h at the age 36, in all treatments, being electronically monitored the temperature and humidity of the microclimate of the birds. Feed and water were provided ad libitum, even during periods of stress. Were measured performance data (weight gain, feed intake and feed conversion) and mortality rate. The early thermal conditioning (T2) and effect of dietary electrolytes (T3) were effective to minimize the mortality of broilers subjected to acute heat stress with a significant difference (P<0.05), without prejudice on broiler performance. The results also showed that there was a more favorable effect when applied dietary electrolytes and thermal conditioning simultaneously (treatment T4). However, for the treatment none of these strategies has been applied (T1), the mortality rate was 83% over that in which they were applied (T4). It was concluded from this study that both techniques: the thermal conditioning early as the dietary electrolytes are efficacious in minimize the damaging effects caused by heat broiler.
Resumo:
The objective of this study was to evaluate the application of early age thermal conditioning (TC) and dietary electrolyte balances (DEB) to minimize the effect of heat stress. A total of 240 Cobb 500 1-d-old male broiler chicks was randomly allocated to 24 floor pens with six replicates per treatment in a 2x2 factorial arrangement (with and without TC and with and without DEB). Dietary treatments consisted: (T1) a traditional diet without TC; (T2) traditional diet with TC; (T3) with the application of dietary electrolyte and without TC and (T4) application of dietary electrolyte with TC. The thermal conditioning was conducted at 5 d of age (36°C for 24 h), only half of the batch (120 birds). After this period, all birds were transferred to boxes of 1.5 x 3m (10 birds / box), with wood shavings reused as litter. Chicks were exposed to chronic heat stress (32°C) for 6 h from 35 to 39 d of age, in all treatments, being electronically monitored the temperature and humidity of the microclimate of the birds. Feed and water were provided ad libitum, even during periods of stress. Were measured performance data (weight gain, feed intake and feed conversion) and mortality rate. Data were subjected to ANOVA using the GLM procedures of SAS. The results of this study demonstrated no interaction effects of all evaluated parameters (performance and mortality). Therefore, no synergism occurred when both strategies (TC and DEB) were applied. Only the first week there was prejudice on broiler performance with the application of the TC and apparently the technique of early age thermal conditioning no improve the resistance of broilers to chronic heat stress. On the other hand, DEB had significantly favorable effects (P<0.05) on performance and minimized mortality immediately after application of the TC.
Resumo:
BACKGROUND: Mycograb (NeuTec Pharma) is a human recombinant monoclonal antibody against heat shock protein 90 that, in laboratory studies, was revealed to have synergy with amphotericin B against a broad spectrum of Candida species. METHODS: A double-blind, randomized study was conducted to determine whether lipid-associated amphotericin B plus Mycograb was superior to amphotericin B plus placebo in patients with culture-confirmed invasive candidiasis. Patients received a lipid-associated formulation of amphotericin B plus a 5-day course of Mycograb or placebo, having been stratified on the basis of Candida species (Candida albicans vs. non-albicans species of Candida). Inclusion criteria included clinical evidence of active infection at trial entry plus growth of Candida species on culture of a specimen from a clinically significant site within 3 days after initiation of study treatment. The primary efficacy variable was overall response to treatment (clinical and mycological resolution) by day 10. RESULTS: Of the 139 patients enrolled from Europe and the United States, 117 were included in the modified intention-to-treat population. A complete overall response by day 10 was obtained for 29 (48%) of 61 patients in the amphotericin B group, compared with 47 (84%) of 56 patients in the Mycograb combination therapy group (odds ratio [OR], 5.8; 95% confidence interval [CI], 2.41-13.79; P<.001). The following efficacy criteria were also met: clinical response (52% vs. 86%; OR, 5.4; 95% CI, 2.21-13.39; P<.001), mycological response (54% vs. 89%; OR, 7.1; 95% CI, 2.64-18.94; P<.001), Candida-attributable mortality (18% vs. 4%; OR, 0.2; 95% CI, 0.04-0.80; P = .025), and rate of culture-confirmed clearance of the infection (hazard ratio, 2.3; 95% CI, 1.4-3.8; P = .001). Mycograb was well tolerated. CONCLUSIONS: Mycograb plus lipid-associated amphotericin B produced significant clinical and culture-confirmed improvement in outcome for patients with invasive candidiasis.
Resumo:
The dynamics of HIV-1 RNA during structured treatment interruptions (STIs) are well established, but little is known about viral proteins like p24. We studied 65 participants of an STI trial. Before the trial, continuous highly active antiretroviral therapy (HAART) had suppressed their viral load to <50 copies/mL during 6 months. They then interrupted HAART during weeks 1 through 2, 11 through 12, 21 through 22, 31 through 32, and 41 through 52. The p24 was measured by boosted enzyme-linked immunosorbent assay of plasma pretreated by efficient virus disruption and heat denaturation. At time point 0, p24 was measurable in 22 patients (34%), who had maintained a viral load <50 copies/mL for 25.4 months (median, range: 6.2-38.9 months) under HAART. Viral rebounds during 2-week STIs led to a mean p24 increase of only 0.08 to 0.19 log10 (ie, 20%-60%). Pre-HAART viral load and p24 at time 0 independently predicted p24 rebounds during the 4 2-week STIs. The p24 at time 0 and HIV-1 RNA rebound during weeks 41 through 52 independently determined the concomitant p24 rebound. An increase of p24 but not viral load during the first 8 weeks of the long STI correlated significantly with concomitant CD4(+) T cell loss. Persisting p24 despite successful HAART may reflect virus replication in reservoirs not represented by plasma viral load and has implications for the concept of therapeutic vaccination.
Resumo:
Stress response pathways allow cells to sense and respond to environmental changes and adverse pathophysiological states. Pharmacological modulation of cellular stress pathways has implications in the treatment of human diseases, including neurodegenerative disorders, cardiovascular disease, and cancer. The quinone methide triterpene celastrol, derived from a traditional Chinese medicinal herb, has numerous pharmacological properties, and it is a potent activator of the mammalian heat shock transcription factor HSF1. However, its mode of action and spectrum of cellular targets are poorly understood. We show here that celastrol activates Hsf1 in Saccharomyces cerevisiae at a similar effective concentration seen in mammalian cells. Transcriptional profiling revealed that celastrol treatment induces a battery of oxidant defense genes in addition to heat shock genes. Celastrol activated the yeast Yap1 oxidant defense transcription factor via the carboxy-terminal redox center that responds to electrophilic compounds. Antioxidant response genes were likewise induced in mammalian cells, demonstrating that the activation of two major cell stress pathways by celastrol is conserved. We report that celastrol's biological effects, including inhibition of glucocorticoid receptor activity, can be blocked by the addition of excess free thiol, suggesting a chemical mechanism for biological activity based on modification of key reactive thiols by this natural product.
Resumo:
Introduction: The re sponse of crop plants ex posed on drought or heat shock is related to de crease in the synthesis of normal proteins, accompanied by increased translation of heat shock proteins (HSPs). Though drought and heat stress have been studied individually, little is known about their combined effect on plants. Methods: The wheat (Triticum aestivum L.) varieties (Katya-tolerant, Sadovo or Mladka-susceptible) were potted in soil. Eight-day-old plants were ex posed to with drawing water for seven days. Heat shock was realized in growth chamber at 40 °C for 6h. A combination of drought and heat shock was per formed by subjecting drought-stressed plants to heat shock treatment. Expression of HSPs in the first leaf of wheat varieties was analyzed by SDS electrophoresis and immunoblotting. Polyclonal antibodies against HSP20, HSP60, HSP110 and mononclonal antibodies against HSP70 were used to distinguish the mentioned HSPs. Results: The leaf relative water content (RWC), which indicated the level of plant dehydration decreased significantly (34 %) under drought stressed conditions The electrolyte leakage of ions (EL), representing the level of the cell membrane stability in creased mark edly (68 %), especially under combination of drought and heat. Maximum EL was ob served in drought susceptible varieties Sadovo and Mladka. Drought and heat shock combination in the wheat plants resulted in the induction of specific HSPs. Conclusions: Our results demonstrate that the response of the wheat plants to a combination of drought and heat stress is different from the response of plants to each of these stresses applied separately. Induction of synergetic effect on HSP expression in case of combination between drought and heat was discussed in the case of two contrasting wheat varieties.
Resumo:
Her2 overexpression and amplification can be found in a significant subset of esophageal adenocarcinomas. The activity of Her2 has been shown to be modulated by molecular chaperones such as HSP90. We analyzed expression/amplification data for HSP90 and Her2 on 127 primary resected esophageal adenocarcinomas in order to evaluate a possible relationship between these two molecules. HSP90 expression determined by immunohistochemistry was observed in various levels. Thirty nine (39) tumors (30.7%) were classified as Her2-positive according to their immunoreactivity and amplification status. There was a significant correlation between HSP90 expression and Her2-status (p = 0.008). This could also be demonstrated by quantitative protein expression analysis with reverse phase protein arrays (r = 0.9; p < 0.001). Her2-status was associated withpT-category (p = 0.041), lymph node metastases (p = 0.049) and tumor differentiation (p = 0.036) with a higher percentage of cases with negative Her2 status in lower tumor stagesA negative Her2-status was also associated with better survival in univariate and multivariate analysis (p = 0.001 and p = 0.014). For HSP90, no associations between clinical and pathological parameters were found. The observed association between HSP90 expression and Her2 suggests a co-regulation of these molecules in at least a subset of esophageal adenocarcinomas. Anti-HSP90 drugs, which recently have been introduced in cancer treatment, may also be an option for these tumors by targeting HSP90 alone or in combination with Her2.
Resumo:
Changes in chlorophyll content, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) binding protein (RBP), Rubisco activase (RA), Rubisco large (LS) and small (SS) subunits, and electrolyte leakage were investigated in wheat leaf segments during heat stress (HS) for 1 h and for 24 h at 40 °C in darkness or in light, as well as after recovery from heat stress (HSR) for 24 h at 25 °C in light. The 24-h HS treatment in darkness decreased irreversibly photosynthetic pigments, soluble proteins, RBP, RA, Rubisco LS and SS. An increase in RA and RBP protein contents was observed under 24-h HS and HSR in light. This increase was in accordance with their role as chaperones and the function of RBP as a heat shock protein.
Resumo:
The baker's yeast, Saccharomyces cerevisiae responds to the cytotoxic effects of elevated temperature (37-42°C) by activating transcription of ∼150 genes, termed heat shock genes, collectively required to compensate for the abundance of misfolded and aggregated proteins and various physiological modifications necessary for the cell to survive and grow at heat shock temperatures. An intriguing facet of the yeast heat shock response is the remarkable similarity it shares with the global remodeling that occurs in mammalian cells in response to numerous pathophysiological conditions including cancer and cardiovascular disease and thus provides an ideal model system. I have therefore investigated several novel features of stress signaling, transcriptional regulation, and physiology. Initial work focused on the characterization of SYM1, a novel heat shock gene in yeast which was demonstrated to be required for growth on the nonfermentable carbon source ethanol at elevated temperature, and to be the functional ortholog of the mammalian kidney disease gene, Mpv17. Additional work addressed the role of two proteins, the Akt-related kinase, Sch9, and Sse1, the yeast Hsp110 protein chaperone homolog, in signaling by protein kinase A, establishing Sse1 as a critical negative regulator of this pathway. Furthermore, I have demonstrated a role for Sse1 in biogenesis and stability of the stress-response transcription factor, Msn2; a finding that has been extended to include a select subset of additional high molecular weight proteins, suggesting a more global role for this chaperone in stabilizing the cellular proteome. The final emphasis of my doctoral work has included the finding that celastrol, a compound isolated from the plant family Celasfraceae, a component of traditional Chinese herbal medicine, can activate heat shock transcription factor (Hsf1) in yeast and mammalian cells through an oxidative stress mechanism. Celastrol treatment simultaneously activates both heat shock and oxidative stress response pathways, resulting in increased cytoprotection. ^