963 resultados para HUMAN-TUMOR CELLS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thirty monoclonal antibodies from eight laboratories exchanged after the First Workshop on Monoclonal Antibodies to Human Melanoma held in March 1981 at NIH were tested in an antibody-binding radioimmunoassay using a panel of 28 different cell lines. This panel included 12 melanomas, three neuroblastomas, four gliomas, one retinoblastoma, four colon carcinomas, one lung carcinoma, one cervical carcinoma, one endometrial carcinoma, and one breast carcinoma. The reactivity pattern of the 30 monoclonal antibodies tested showed that none of them were directed against antigens strictly restricted to melanoma, but that several of them recognize antigenic structures preferentially expressed on melanoma cells. A large number of antibodies were found to crossreact with gliomas and neuroblastomas. Thus, they seem to recognize neuroectoderm associated differentiation antigens. Four monoclonal antibodies produced in our laboratory were further studied for the immunohistological localization of melanoma associated antigens on fresh tumor material. In a three-layer biotin-avidin-peroxidase system each antibody showed a different staining pattern with the tumor cells, suggesting that they were directed against different antigens.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BORIS/CTCFL is a member of cancer testis antigen family normally expressed in germ cells. In tumors, it is aberrantly expressed although its functions are not completely well-defined. To better understand the functions of BORIS in cancer, we selected the embryonic cancer cells as a model. Using a molecular beacon, which specifically targets BORIS mRNA, we demonstrated that BORIS positive cells are a small subpopulation of tumor cells (3-5% of total). The BORIS-positive cells isolated using BORIS-molecular beacon, expressed higher telomerase hTERT, stem cell (NANOG, OCT4, SOX2) and cancer stem cell marker genes (CD44 and ALDH1) compared to the BORIS-negative tumor cells. In order to define the functional role of BORIS, stable BORIS-depleted embryonic cancer cells were generated. BORIS silencing strongly down-regulated the expression of hTERT, stem cell and cancer stem cell marker genes. Moreover, the BORIS knockdown increased cellular senescence in embryonic cancer cells, revealing a putative role of BORIS in the senescence biological program. Our data indicate an association of BORIS expressing cells subpopulation with the expression of stemness genes, highlighting the critical role played by BORIS in embryonic neoplastic disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Expression of laminin-5 alpha3, beta3 and gamma2 protein subunits was investigated in colorectal adenocarcinomas using immunostaining and confocal microscopy. The laminin-5 heterotrimer was found in basement membranes and as extracellular deposits in tumor stroma. In contrast to the alpha3 subunit, which was under-expressed, the gamma2 and beta3 subunits were detected in the cytoplasm of carcinoma cells dissociating (budding) from neoplastic tubules, suggestive of focal alterations in laminin-5 assembly and secretion. Laminin-5 gamma2 or beta3 subunit-reactive budding carcinoma cells expressed cytokeratins but not vimentin; they did not proliferate and were not apoptotic. Furthermore, expression of laminin-5 gamma2 and beta3 subunits in budding cells was associated with focal under-expression of the E-cadherin-beta-catenin complex. Results from xenograft experiments showed that budding activity in colorectal adenocarcinomas could be suppressed when these tumors grew at ectopic s.c. sites in nude mice. In vitro, cultured colon carcinoma cells, but not adenoma-derived tumor cells, shared the laminin-5 phenotype expressed by carcinoma cells in vivo. Using colon carcinoma cell lines implanted orthotopically and invading the cecum of nude mice, the laminin-5-associated budding was restored, indicating that this phenotype is not only determined by tumor cell properties but also dependent on the tissue micro-environment. Our results indicate that both laminin-5 alpha3 subunit expression and cell-cell cohesiveness are altered in budding carcinoma cells, which we consider to be actively invading. We propose that the local tissue micro-environment contributes to these events.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tumor progression is facilitated by regulatory T cells (Treg) and restricted by effector T cells. In this study, we document parallel regulation of CD8(+) T cells and Foxp3(+) Tregs by programmed death-1 (PD-1, PDCD1). In addition, we identify an additional role of CTL antigen-4 (CTLA-4) inhibitory receptor in further promoting dysfunction of CD8(+) T effector cells in tumor models (CT26 colon carcinoma and ID8-VEGF ovarian carcinoma). Two thirds of CD8(+) tumor-infiltrating lymphocytes (TIL) expressed PD-1, whereas one third to half of CD8(+) TIL coexpressed PD-1 and CTLA-4. Double-positive (PD-1(+)CTLA-4(+)) CD8(+) TIL had characteristics of more severe dysfunction than single-positive (PD-1(+) or CTLA-4(+)) TIL, including an inability to proliferate and secrete effector cytokines. Blockade of both PD-1 and CTLA-4 resulted in reversal of CD8(+) TIL dysfunction and led to tumor rejection in two thirds of mice. Double blockade was associated with increased proliferation of antigen-specific effector CD8(+) and CD4(+) T cells, antigen-specific cytokine release, inhibition of suppressive functions of Tregs, and upregulation of key signaling molecules critical for T-cell function. When used in combination with GVAX vaccination (consisting of granulocyte macrophage colony-stimulating factor-expressing irradiated tumor cells), inhibitory pathway blockade induced rejection of CT26 tumors in 100% of mice and ID8-VEGF tumors in 75% of mice. Our study indicates that PD-1 signaling in tumors is required for both suppressing effector T cells and maintaining tumor Tregs, and that PD-1/PD-L1 pathway (CD274) blockade augments tumor inhibition by increasing effector T-cell activity, thereby attenuating Treg suppression. Cancer Res; 73(12); 3591-603. ©2013 AACR.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Superparamagnetic iron oxide nanoparticles (SPIONs) are in clinical use for disease detection by MRI. A major advancement would be to link therapeutic drugs to SPIONs in order to achieve targeted drug delivery combined with detection. In the present work, we studied the possibility of developing a versatile synthesis protocol to hierarchically construct drug-functionalized-SPIONs as potential anti-cancer agents. Our model biocompatible SPIONs consisted of an iron oxide core (9-10 nm diameter) coated with polyvinylalcohols (PVA/aminoPVA), which can be internalized by cancer cells, depending on the positive charges at their surface. To develop drug-functionalized-aminoPVA-SPIONs as vectors for drug delivery, we first designed and synthesized bifunctional linkers of varied length and chemical composition to which the anti-cancer drugs 5-fluorouridine or doxorubicin were attached as biologically labile esters or peptides, respectively. These functionalized linkers were in turn coupled to aminoPVA by amide linkages before preparing the drug-functionalized-SPIONs that were characterized and evaluated as anti-cancer agents using human melanoma cells in culture. The 5-fluorouridine-SPIONs with an optimized ester linker were taken up by cells and proved to be efficient anti-tumor agents. While the doxorubicin-SPIONs linked with a Gly-Phe-Leu-Gly tetrapeptide were cleaved by lysosomal enzymes, they exhibited poor uptake by human melanoma cells in culture.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE: To assess porcine urothelial cell cultures and the in vitro induction of urothelial stratification in long-term cultures, to study their morphological, functional and genetic behaviour, and thus provide potential autologous urothelium for tissue-engineered substitutes for demucosalized gastric or colonic tissue. MATERIALS AND METHODS: Primary cultures of porcine urothelium were established and the cells passaged thereafter. Cell specificity was confirmed by cytokeratin analysis, cell membrane stability assessed using lactate dehydrogenase leakage, cell de-differentiation by gamma-glutamyl transferase activity and genomic stability by karyotype investigations. Histology and scanning electron microscopy were performed to study the cultured cells and the stratified constructs. Furthermore, collagen matrices were tested as cell scaffolds. RESULTS: The cells were cultured for 180 days; 10 subcultures were established during this period. Stratification was induced in a culture flask and on a collagen matrix. Cytokeratins 7, 8, 17 and 18 were expressed in all cultures, and cell membranes were stable, with no evident de-differentiation. The cultures were stable in their genotype and no chromosomal aberrations were found. The histology and immunohistochemistry of the stratified porcine constructs, and cell membrane stability and cell de-differentiation, were compared with those in the human system. CONCLUSION: Pig and human urothelial cells can be cultured over a long period with no signs of senescence. Urothelial stratification can be induced in vitro. The collagen matrix seems to be an excellent scaffold, allowing cell adherence and growth.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To control the selective adhesion of human endothelial cells and human serum proteins to bioceramics of different compositions, a multifunctional ligand containing a cyclic arginine-glycine-aspartate (RGD) peptide, a tetraethylene glycol spacer, and a gallate moiety was designed, synthesized, and characterized. The binding of this ligand to alumina-based, hydroxyapatite-based, and calcium phosphate-based bioceramics was demonstrated. The conjugation of this ligand to the bioceramics induced a decrease in the nonselective and integrin-selective binding of human serum proteins, whereas the binding and adhesion of human endothelial cells was enhanced, dependent on the particular bioceramics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Surfactants are used as additives in topical pharmaceuticals and drug delivery systems. The biocompatibility of amino acid-based surfactants makes them highly suitable for use in these fields, but tests are needed to evaluate their potential toxicity. Here we addressed the sensitivity of tumor (HeLa, MCF-7) and non-tumor (3T3, 3T6, HaCaT, NCTC 2544) cell lines to the toxic effects of lysine-based surfactants by means of two in vitro endpoints (MTT and NRU). This comparative assay may serve as a reliable approach for predictive toxicity screening of chemicals prior to pharmaceutical applications. After 24-h of cell exposure to surfactants, differing toxic responses were observed. NCTC 2544 and 3T6 cell lines were the most sensitive, while both tumor cells and 3T3 fibroblasts were more resistant to the cytotoxic effects of surfactants. IC50-values revealed that cytotoxicity was detected earlier by MTT assay than by NRU assay, regardless of the compound or cell line. The overall results showed that surfactants with organic counterions were less cytotoxic than those with inorganic counterions. Our findings highlight the relevance of the correct choice and combination of cell lines and bioassays in toxicity studies for a safe and reliable screen of chemicals with potential interest in pharmaceutical industry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A proliferation-inducing ligand (APRIL) is a ligand of the tumor necrosis factor (TNF) family that stimulates tumor cell growth in vitro and in vivo. Expression of APRIL is highly upregulated in many tumors including colon and prostate carcinomas. Here we identify B cell maturation antigen (BCMA) and transmembrane activator and calcium modulator and cyclophilin ligand (CAML) interactor (TACI), two predicted members of the TNF receptor family, as receptors for APRIL. APRIL binds BCMA with higher affinity than TACI. A soluble form of BCMA, which inhibits the proliferative activity of APRIL in vitro, decreases tumor cell proliferation in nude mice. Growth of HT29 colon carcinoma cells is blocked when mice are treated once per week with the soluble receptor. These results suggest an important role for APRIL in tumorigenesis and point towards a novel anticancer strategy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although antihistamines and topical corticosteroids are used in combination to treat allergic rhinitis, their additive effect has not been yet demonstrated. The aim was investigate the antiinflammatory additive effect of mometasone and desloratadine on cytokine and sICAM-1 secretion by epithelial cells, and on eosinophil survival stimulated by human epithelial cells secretions from nasal mucosa and polyps. Methods Epithelial cells obtained from nasal mucosa or polyps were stimulated with 10% fetal bovine serum in presence of mometasone (10-11M-10-5M) with/without desloratadine (10-5M). Cytokine and sICAM-1 concentrations in supernatants were measured by ELISA. Peripheral blood eosinophils were incubated during 4 days with epithelial cell secretions with (10-11M-10-5M) and/or desloratadine (10-5M) and survival assessed by Trypan blue. Results are expressed as percentage (mean ± SEM) compared to control. Results Fetal bovine serum stimulated IL-6, IL-8, GM-CSF and sICAM-1 secretion. In mucosa and polyp epithelial cells, mometasone inhibited this induced secretion while desloratadine inhibited IL-6 and IL-8. The combination of 10-5M desloratadine and 10-9M mometasone reduced IL-6 secretion (48 ± 11%, p < 0.05) greater extent than mometasone alone (68 ± 10%) compared to control (100%). Epithelial cell secretions induced eosinophil survival from day 1 to 4, this effect being inhibited by mometasone. At day 4, the combination of mometasone (10-11M) and desloratadine (10-5M) provoked an increased inhibition of eosinophil survival induced by cell secretions (27 ± 5%, p < 0.01) than mometasone (44 ± 7%) or desloratadine (46 ± 7%) alone. Conclusions These results suggest that the combination of desloratadine and mometasone furoate have a greater antinflammatory effect in an in vitro model of eosinophil inflammation than those drugs administered alone.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The function of DNA-binding proteins is controlled not just by their abundance, but mainly at the level of their activity in terms of their interactions with DNA and protein targets. Moreover, the affinity of such transcription factors to their target sequences is often controlled by co-factors and/or modifications that are not easily assessed from biological samples. Here, we describe a scalable method for monitoring protein-DNA interactions on a microarray surface. This approach was designed to determine the DNA-binding activity of proteins in crude cell extracts, complementing conventional expression profiling arrays. Enzymatic labeling of DNA enables direct normalization of the protein binding to the microarray, allowing the estimation of relative binding affinities. Using DNA sequences covering a range of affinities, we show that the new microarray-based method yields binding strength estimates similar to low-throughput gel mobility-shift assays. The microarray is also of high sensitivity, as it allows the detection of a rare DNA-binding protein from breast cancer cells, the human tumor suppressor AP-2. This approach thus mediates precise and robust assessment of the activity of DNA-binding proteins and takes present DNA-binding assays to a high throughput level.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The identification of CTL-defined tumor-associated Ags has allowed the development of new strategies for cancer immunotherapy. To potentiate the CTL responses, peptide-based vaccines require the coadministration of adjuvants. Because oligodeoxynucleotides (ODN) containing CpG motifs are strong immunostimulators, we analyzed the ability of CpG ODN to act as adjuvant of the CTL response against tumor-derived synthetic peptide in the absence or presence of IFA. Mice transgenic for a chimeric MHC class I molecule were immunized with a peptide analog of MART-1/Melan-A(26-35) in the presence of CpG ODN alone or CpG ODN emulsified in IFA. The CTL response was monitored ex vivo by tetramer staining of lymphocytes. In blood, spleen, and lymph nodes, peptide mixed with CpG ODN alone was able to elicit a stronger systemic CTL response as compared with peptide emulsified in IFA. Moreover, CpG ODN in combination with IFA further enhanced the CTL response in terms of the frequency of tetramer+CD8+ T cells ex vivo. The CTL induced in vivo against peptide analog in the presence of CpG ODN are functional, as they were able to recognize and kill melanoma cells in vitro. Overall, these results indicate that CpG ODN by itself is a good candidate adjuvant of CTL response and can also enhance the effect of classical adjuvant.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose:Chemokine receptors are transmembrane G coupled proteins that might be involved in the directional metastatic migration of tumor cells to specific organs. CXCR4 and CCR7 have been implicated in the selective metastasis of cutaneous melanoma cells to lung and lymph node, respectively. CCR6 is expressed in metastases from colon, ovarian and thyroid carcinomas to the liver where its ligand, CCL20, is constitutively expressed. As uveal melanomas frequently metastasize to the liver, we hypothesized that specific chemokine receptors and their respective ligands might be involved in metastasis of uveal melanoma to the liver. Methods:Tissue microarrays were constructed using 100 non irradiated primary uveal melanomas and 84 liver metastases, as well as 12 non liver metastases, collected from the files of Jules Gonin Eye Hospital and Pathology Institute, University of Lausanne. Immunohistochemistry was performed using anti-human CXCR4, SDF1, CCR7, CCL21 and CCR6 antibodies. Results:CXCR4 expression was detected in 36% of primary uveal melanomas and in 63% of liver metastases but no expression was found in metastases to other organs, except for one pancreatic metastasis. SDF1 expression was detected in 3% of primary uveal melanomas and in 26% of liver metastases, as well as in pancreas, lymph node and breast metastases. CCR6 expression was observed in the majority of primary uveal melanomas and liver metastases (73 and 88%, respectively). In addition, CCR6 was also detected in 9 metastases to other organs (pancreas, thyroid, lymph node, skin and breast). CCR7 and CCL21 were neither detected in primary uveal melanoma, nor in the metastases. Conclusions:Chemokine receptors CCR6 and CXCR4 are expressed in a large number of primary uveal melanomas and in uveal melanoma metastases to the liver. CCR6 is also expressed in a small number of metastases to other organs. These findings form the basis for further studies on the potential involvement of CXCR4 and CCR6 in the selective metastasis of uveal melanoma to the liver.