923 resultados para HR-arbetets dualitet
Resumo:
Glioblastoma (GBM) is the most common and aggressive primary brain tumor with very poor patient median survival. To identify a microRNA (miRNA) expression signature that can predict GBM patient survival, we analyzed the miRNA expression data of GBM patients (n = 222) derived from The Cancer Genome Atlas (TCGA) dataset. We divided the patients randomly into training and testing sets with equal number in each group. We identified 10 significant miRNAs using Cox regression analysis on the training set and formulated a risk score based on the expression signature of these miRNAs that segregated the patients into high and low risk groups with significantly different survival times (hazard ratio HR] = 2.4; 95% CI = 1.4-3.8; p < 0.0001). Of these 10 miRNAs, 7 were found to be risky miRNAs and 3 were found to be protective. This signature was independently validated in the testing set (HR = 1.7; 95% CI = 1.1-2.8; p = 0.002). GBM patients with high risk scores had overall poor survival compared to the patients with low risk scores. Overall survival among the entire patient set was 35.0% at 2 years, 21.5% at 3 years, 18.5% at 4 years and 11.8% at 5 years in the low risk group, versus 11.0%, 5.5%, 0.0 and 0.0% respectively in the high risk group (HR = 2.0; 95% CI = 1.4-2.8; p < 0.0001). Cox multivariate analysis with patient age as a covariate on the entire patient set identified risk score based on the 10 miRNA expression signature to be an independent predictor of patient survival (HR = 1.120; 95% CI = 1.04-1.20; p = 0.003). Thus we have identified a miRNA expression signature that can predict GBM patient survival. These findings may have implications in the understanding of gliomagenesis, development of targeted therapy and selection of high risk cancer patients for adjuvant therapy.
Resumo:
Using the density-matrix renormalization-group technique, we study the ground-state phase diagram and other low-energy properties of an isotropic antiferromagnetic spin-1/2 chain with both dimerization and frustration, i.e., an alternation delta of the nearest-neighbor exchanges and a next-nearest-neighbor exchange J(2). For delta = 0, the system is gapless for J(2) < J(2c) and has a gap for J(2) > J(2c) where J(2c) is about 0.241. For J(2) = J(2c) the gap above the ground state grows as delta to the power 0.667 +/- 0.001. In the J(2)-delta plane, there is a disorder line 2J(2) + delta = 1. To the left of this line, the peak in the static structure factor S(q) is at q(max) = pi (Neel phase), while to the right of the line, q(max) decreases from pi to pi/2 as J(2) is increased to large values (spiral phase). For delta = 1, the system is equivalent to two coupled chains as on a ladder and it is gapped for all values of the interchain coupling.
Resumo:
We present the details of a formalism for calculating spatially varying zero-frequency response functions and equal-time correlation functions in models of magnetic and mixed-valence impurities of metals. The method is based on a combination of perturbative, thermodynamic scaling theory [H. R. Krishna-murthy and C. Jayaprakash, Phys. Rev. B 30, 2806 (1984)] and a nonperturbative technique such as the Wilson renormalization group. We illustrate the formalism for the spin-1/2 Kondo problem and present results for the conduction-spin-density�impurity-spin correlation function and conduction-electron charge density near the impurity. We also discuss qualitative features that emerge from our calculations and discuss how they can be carried over to the case of realistic models for transition-metal impurities.
Resumo:
Using the d=infinity or local-approximation approach to the half-filled Hubbard model on a compressible lattice, we present a detailed study of the transport and structural properties near the paramagnetic metal-insulator transition. The results describe qualitatively most of the observed data in V2O3, including the metal-insulator-metal crossover [Kuwamoto et al., Phys. Rev. B 22, 2626 (1980)]. In addition, we discuss an interesting and intrinsic reentrance feature in the resistivity of the half-filled Hubbard model at high temperatures.
Resumo:
The stability of the Hagen-Poiseuille flow of a Newtonian fluid in a tube of radius R surrounded by an incompressible viscoelastic medium of radius R < r < HR is analysed in the high Reynolds number regime. The dimensionless numbers that affect the fluid flow are the Reynolds number Re = (rho VR/eta), the ratio of the viscosities of the wall and fluid eta(r) = (eta(s)/eta), the ratio of radii H and the dimensionless velocity Gamma = (rho V-2/G)(1/2). Here rho is the density of the fluid, G is the coefficient of elasticity of the wall and V is the maximum fluid velocity at the centre of the tube. In the high Reynolds number regime, an asymptotic expansion in the small parameter epsilon = (1/Re) is employed. In the leading approximation, the viscous effects are neglected and there is a balance between the inertial stresses in the fluid and the elastic stresses in the medium. There are multiple solutions for the leading-order growth rate s((0)), all of which are imaginary, indicating that the fluctuations are neutrally stable, since there is no viscous dissipation of energy or transfer of energy from the mean flow to the fluctuations due to the Reynolds stress. There is an O(epsilon(1/2)) correction to the growth rate, s((1)), due to the presence of a wall layer of thickness epsilon(1/2)R where the viscous stresses are O(epsilon(1/2)) smaller than the inertial stresses. An energy balance analysis indicates that the transfer of energy from the mean flow to the fluctuations due to the Reynolds stress in the wall layer is exactly cancelled by an opposite transfer of equal magnitude due to the deformation work done at the interface, and there is no net transfer from the mean flow to the fluctuations. Consequently, the fluctuations are stabilized by the viscous dissipation in the wall layer, and the real part of s(1) is negative. However, there are certain values of Gamma and wavenumber k where s((1)) = 0. At these points, the wall layer amplitude becomes zero because the tangential velocity boundary condition is identically satisfied by the inviscid flow solution. The real part of the O(epsilon) correction to the growth rate s((2)) turns out to be negative at these points, indicating a small stabilizing effect due to the dissipation in the bulk of the fluid and the wall material. It is found that the minimum value of s((2)) increases proportional to (H-1)(-2) for (H-1) much less than 1 (thickness of wall much less than the tube radius), and decreases proportional to H-4 for H much greater than 1. The damping rate for the inviscid modes is smaller than that for the viscous wall and centre modes in a rigid tube, which have been determined previously using a singular perturbation analysis. Therefore, these are the most unstable modes in the flow through a flexible tube
Resumo:
The stability of Hagen-Poiseuille flow of a Newtonian fluid of viscosity eta in a tube of radius R surrounded by a viscoelastic medium of elasticity G and viscosity eta(s) occupying the annulus R < r < HR is determined using a linear stability analysis. The inertia of the fluid and the medium are neglected, and the mass and momentum conservation equations for the fluid and wall are linear. The only coupling between the mean flow and fluctuations enters via an additional term in the boundary condition for the tangential velocity at the interface, due to the discontinuity in the strain rate in the mean flow at the surface. This additional term is responsible for destabilizing the surface when the mean velocity increases beyond a transition value, and the physical mechanism driving the instability is the transfer of energy from the mean flow to the fluctuations due to the work done by the mean flow at the interface. The transition velocity Gamma(t) for the presence of surface instabilities depends on the wavenumber k and three dimensionless parameters: the ratio of the solid and fluid viscosities eta(r) = (eta(s)/eta), the capillary number Lambda = (T/GR) and the ratio of radii H, where T is the surface tension of the interface. For eta(r) = 0 and Lambda = 0, the transition velocity Gamma(t) diverges in the limits k much less than 1 and k much greater than 1, and has a minimum for finite k. The qualitative behaviour of the transition velocity is the same for Lambda > 0 and eta(r) = 0, though there is an increase in Gamma(t) in the limit k much greater than 1. When the viscosity of the surface is non-zero (eta(r) > 0), however, there is a qualitative change in the Gamma(t) vs. k curves. For eta(r) < 1, the transition velocity Gamma(t) is finite only when k is greater than a minimum value k(min), while perturbations with wavenumber k < k(min) are stable even for Gamma--> infinity. For eta(r) > 1, Gamma(t) is finite only for k(min) < k < k(max), while perturbations with wavenumber k < k(min) or k > k(max) are stable in the limit Gamma--> infinity. As H decreases or eta(r) increases, the difference k(max)- k(min) decreases. At minimum value H = H-min, which is a function of eta(r), the difference k(max)-k(min) = 0, and for H < H-min, perturbations of all wavenumbers are stable even in the limit Gamma--> infinity. The calculations indicate that H-min shows a strong divergence proportional to exp (0.0832 eta(r)(2)) for eta(r) much greater than 1.
Resumo:
Administration of Tamoxifen via the Alzet pump at a rate of 50 mu g hr(-1) for 90 days in the adult male bonnet monkeys Macaca radiata had no effect on the serum testosterone concentration determined at 10 AM and 10 PM as well as total sperm count determined at 15-day intervals over a period of 260 days. However, a significant reduction in sperm motility was observed beyond 90 days up until the 225th day. Breeding studies conducted from day 90 to 260 revealed that these males were infertile.
Resumo:
Glasses in the system (1 - x)Li2B4O7-xBi(2)WO(6) (0.1 less than or equal to x less than or equal to 0.35) were prepared by splat quenching technique. Powder X-ray diffraction (XRD) and differential thermal analysis (DTA) were employed to characterize the as-quenched glasses. High-resolution transmission electron microscopy (HR TEM) revealed the presence of fine, nearly spherical crystallites of Bi2WO6 varying from 1.5 to 20 nm in size, depending on x in the as-quenched glasses. The glasses (corresponding to x = 0.3) heat-treated at 723 K for 6 h gave rise to a clear crystalline phase of Bi2WO6 embedded in the Li2B4O7 glass matrix, as observed by X-ray studies. The dielectric constants of the as-quenched glasses as well as the glass-ceramics decreased with increase in frequency (40Hz-100 kHz) at 300 K, and the value obtained for the glass-ceramic (x = 0.2) is in agreement with the values predicted using Maxwell's model and the logarithmic mixture rule. The dielectric constants for both the as-quenched glass and the glass-ceramic increased with increase in temperature (300 - 873 K) and exhibited anomalies close to the onset of the crystallization temperature of the host glass matrix. The optical transmission properties:of these glass-ceramics were found to be compositional dependant. (C) 2000 Elsevier Science Ltd.
Resumo:
Background: Depression and anxiety have been linked to serious cardiovascular events in patients with preexisting cardiac illness. A decrease in cardiac vagal function as suggested by a decrease in heart rate (HR) variability has been linked to sudden death. Methods: We compared LLE and nonlinearity scores of the unfiltered (UF) and filtered time series (very low, low, and high frequency; VLF, LF and HF) of HR between patients with depression (n = 14) and healthy control subjects (n = 18). Results: We found significantly lower LLE of the unfiltered series in either posture, and HF series in patients with major depression in supine posture (p < .002). LLE (LF/UF), which may indicate relative sympathetic activity was also significantly higher in supine and standing postures in patients (p < .05); LF/HF (LLE) was also higher in patients (p < .05) in either posture. Conclusions: These findings suggest that major depression is associated with decreased cardiac vagal function and a relative increase in sympathetic function, which may be related to the higher risk of cardiovascular mortality, in this group and illustrates the usefulness of nonlinear measures of chaos such as LLE in addition to the commonly used spectral measures.
Resumo:
GaAs/Ge heterostructures having abrupt interfaces were grown on 2degrees, 6degrees, and 9degrees off-cut Ge substrates and investigated by cross-sectional high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy, photoluminescence spectroscopy and electrochemical capacitance voltage (ECV) profiler. The GaAs films were grown on off-oriented Ge substrates with growth temperature in the range of 600-700degreesC, growth rate of 3-12 mum/hr and a V/III ratio of 29-88. The lattice indexing of HRTEM exhibits an excellent lattice line matching between GaAs and Ge substrate. The PL spectra from GaAs layer on 6degrees off-cut Ge substrate shows the higher excitonic peak compared with 2degrees and 9degrees off-cut Ge substrates. In addition, the luminescence intensity from the GaAs solar cell grown on 6degrees off-cut is higher than on 9degrees off-cut Ge substrates and signifies the potential use of 6degrees off-cut Ge substrate in the GaAs solar cells industry. The ECV profiling shows an abrupt film/substrate interface as well as between various layers of the solar cell structures.
Resumo:
We present the results of sub-mm, mm (850 mum, 450 mum and 1250 mum) and radio (1.4 and 4.8 GHz) continuum observations of a sample of 27 K-selected Extremely Red Objects, or EROs, (14 of which form a complete sample with K < 20 and I - K > 5) aimed at detecting dusty starbursts, deriving the fraction of UltraLuminous Infrared Galaxies (ULIGs) in ERO samples, and constraining their redshifts using the radio-FIR correlation. One ERO was tentatively detected at 1250 mum and two were detected at 1.4 GHz, one of which has a less secure identification as an ERO counterpart. Limits on their redshifts and their star forming properties are derived and discussed. We stacked the observations of the undetected objects at 850 mum, 1250 mum and 4.8 GHz in order to search for possible statistical emission from the ERO population as a whole, but no significant detections were derived either for the whole sample or as a function of the average NIR colours. These results strongly suggest that the dominant population of EROs with K < 20 is not comprised of ULIGs like HR 10, but is probably made of radio-quiet ellipticals and weaker starburst galaxies with L < 10(12) L . and SFR < few hundred M. yr(-1).
Resumo:
The stability of the Hagen-Poiseuille flow of a Newtonian fluid in a tube of radius R surrounded by an incompressible viscoelastic medium of radius R < r < HR is analysed in the high Reynolds number regime. The dimensionless numbers that affect the fluid flow are the Reynolds number Re = (ρVR / η), the ratio of the viscosities of the wall and fluid ηr = (ηs/η), the ratio of radii H and the dimensionless velocity Γ = (ρV2/G)1/2. Here ρ is the density of the fluid, G is the coefficient of elasticity of the wall and Vis the maximum fluid velocity at the centre of the tube. In the high Reynolds number regime, an asymptotic expansion in the small parameter ε = (1/Re) is employed. In the leading approximation, the viscous effects are neglected and there is a balance between the inertial stresses in the fluid and the elastic stresses in the medium. There are multiple solutions for the leading-order growth rate do), all of which are imaginary, indicating that the fluctuations are neutrally stable, since there is no viscous dissipation of energy or transfer of energy from the mean flow to the fluctruations due to the Reynolds strees. There is an O(ε1/2) correction to the growth rate, s(1), due to the presence of a wall layer of thickness ε1/2R where the viscous stresses are O(ε1/2) smaller than the inertial stresses. An energy balance analysis indicates that the transfer of energy from the mean flow to the fluctuations due to the Reynolds stress in the wall layer is exactly cancelled by an opposite transfer of equal magnitude due to the deformation work done at the interface, and there is no net transfer from the mean flow to the fluctuations. Consequently, the fluctuations are stabilized by the viscous dissipation in the wall layer, and the real part of s(1) is negative. However, there are certain values of Γ and wavenumber k where s(l) = 0. At these points, the wail layer amplitude becomes zero because the tangential velocity boundary condition is identically satisfied by the inviscid flow solution. The real part of the O(ε) correction to the growth rate s(2) turns out to be negative at these points, indicating a small stabilizing effect due to the dissipation in the bulk of the fluid and the wall material. It is found that the minimum value of s(2) increases [is proportional to] (H − 1)−2 for (H − 1) [double less-than sign] 1 (thickness of wall much less than the tube radius), and decreases [is proportional to] (H−4 for H [dbl greater-than sign] 1. The damping rate for the inviscid modes is smaller than that for the viscous wall and centre modes in a rigid tube, which have been determined previously using a singular perturbation analysis. Therefore, these are the most unstable modes in the flow through a flexible tube.