987 resultados para HIPS-g-MA
Resumo:
Noncompatibilized and compatibilized ABS-nylon1010 blends were prepared by melt mixing. Polystyrene and glycidyl methacrylate (SG) copolymer was used as a compatibilizer to enhance the interfacial adhesion and to control the morphology. This SG copolymer contains reactive glycidyl groups that are able to react with PA1010 end groups (-NH2 or -COOH) under melt conditions to form SG-g-Nylon copolymer. Effects of the compatibilizer SG on the rheological, thermal, and morphological properties were investigated by capillary rheometer, DSC, and SEM techniques. The compatibilized ABS-PA1010 blend has higher viscosity, lower crystallinity, and smaller phase domain compared to the corresponding noncompatibilized blend. (C) 1999 John Wiley & Sons, Inc.
Resumo:
研究了高抗冲聚苯乙烯(HIPS)/聚丙烯(PP)在过氧化二异丙苯(DCP)存在下熔融反应共混物的热学性能。HIPS在DCP存在下以PS的降解为主,PS的Tg明显下降,PP在DCP存在下也以降解为主,PP的结晶完善性受到破坏,HIPS/PP共混物在DCP存在下以PP同HIPS的反应接枝为主,分子运动的特征及热性能较前两者发生明显变化,PS的Tg略有下降,PP分子链的规整性降低,结晶熔点降低,完善性变差。
Resumo:
用JJ-20型仪器化冲击仪研究了HIPS/SBS共混物在组成为100/0、100/5、100/10、100/15、100/20和100/25质量比下样品的Izod缺口冲击性能。结果表明,在组成范围内,随着SBS含量的增加,样品的Izod缺口冲击强度随之增加。质量比为100/25样品的Izod缺口冲击强度值(225.9J/m)比质量比为100/0的样品(108.7J/m)增加了1倍以上。通过对冲击断裂过程的分析表明,冲击强度的提高主要是由于缺口根部应力集中产生塑性区所消耗的裂纹引发能的提高引起的,而裂纹扩展能基本没有多大变化
Resumo:
The thiol group of glutathione (GSH) was protected by 2,4-dinitrochlorobenzene (DNCB), the product S-substituted dinitrophenyl GSH(GSH-S-DNP) was alcoholized to obtain haptenes 4 and 5 respectively. As haptenes, the two GSH derivatives were characterized by means of H-1 NMR, MALDI-TOF-MS and IR, followed by individually coupling with bovine serum albumin (BSA) via glutaraldehyde. BSB-Hp4 and BSA-Hp5 were purified by Sephadex G-25 gel filtration chromatography. For each conjugate, the average haptene-BSA ratio was 12 : 1. The electrophoresis analysis showed that the average molecular weight of each conjugate was 76 500. The CD spectrum indicated that the conjugates had more a-helix content than BSA did.
Resumo:
compatibilizing effect of graft copolymer, linear low density polyethylene-g-polystyrene (LLDPE-g-PS), on immiscible blends of LLDPE with styrene-butadiene-styrene triblock copolymer (SBS) has been investigated by means of C-13 CPMAS n.m.r. and d.s.c. techniques. The results indicate that LLDPE-g-PS is an effective compatibilizer for LLDPE/SBS blends. It was found that LLDPE-g-PS chains connect two immiscible components, LLDPE and SBS, through solubilization of chemically identical segments of LLDPE-g-PS into the amorphous region of LLDPE acid PS block domain of SBS, respectively. It was also found that LLDPE-g-PS chains connect the crystalline region of LLDPE by isomorphism, with serious effects on the supermolecular structure of LLDPE. The effect of LLDPE-g-PS on the supermolecular structure of LLDPE in the LLDPE/SBS blends obviously depends on the composition of the blends, but has little dependence on the PS grafting yields of LLDPE-g-PS. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Effects of the compatibilizer polypropylene grafted with glycidyl methacrylate(PP-g-GMA) on the morphology, thermal, rheological and mechanical properties of polypropylene and polycarbonate blends (PP/PC) were studied. It was found that the addition of PP-g-GMA significantly changed their morphology. The mean size of domains reduced from 20 mu m to less than 5 mu m. The dispersed domain size is also strongly dependent upon the content of PP-g-GMA. The interfacial tension of PP/PC/PP-g-GMA (50/30/20) is only about one-tenth of PP/PC (70/30). The crystallization temperature of PP in PP/PC/PP-g-GMA is 5-8 degrees C higher than that of PP in PP/PC blends. Characterization studies based on mechanical properties, differential scanning calorimetry, rheology and morphological evidence obtained by using scanning electron microscopy support the hypothesis that an in-situ copolymer PP-g-PC was formed during the blending process. (C) 1997 Elsevier Science Ltd.
Resumo:
采用镍催化体系,以抽余油为溶剂,研究了丁二烯溶液聚合的聚合条件。结果表明,在BR-9000生产装置上通过增加镍催化体系用量,降低水用量和适当提高聚合温度,可以制备出HIPS生产所需要的顺丁橡胶。
Resumo:
研究了高抗冲聚苯乙烯(HIPS)/聚丙烯(PP)共混物在过氧化二异丙苯(DCP)存在下的熔融反应过程及其动态力学性质.HIPS在DCP存在下以聚苯乙烯(PS)的降解为主,伴随着聚丁二烯(PB)的交联和接枝,PP在DCP存在下以降解为主,HIPS/PP在DCP存在下以PP同HIPS的反应接枝为主,这种原位生成的增容剂显著地改善了HIPS/PP两组份间的相容性,其分子运动特征较前两者发生明显变化,PS的Tg下降,PB和PP的Tg升高.
Resumo:
The glass transition temperature (T-g) of mixtures of polystyrene (PS) with different molecular weight and of blends of poly(2,6-dimethyl-p-phenylene oxide) (PPO) and polystyrene with different molecular weight (DMWPS) was studied by a DSC method. For the whole range of composition, the curves of T-g vs composition obtained by experiment were compared with predictions from the Fox, Gordon-Taylor, Couchman and Lu-Weiss, equations. It was found that the experimental results were not in agreement with those from the Fox, Gordon-TayIor and Couchman equations for the binary mixtures of DMWPS, where the interaction parameter chi was approximately zero. However, for the blends PPO/DMWPS (chi < 0), with an increase of molecular weight of PS, it was shown that the experimental results fitted well with those obtained from the Couchman, Gordon-Taylor and Fox equations, respectively. Furthermore, the Gordon-Taylor equation was nearly identical to the Lu-Weiss equation when \chi\ was not very large. Further, the dependence of the change of heat capacity associated with the glass transition (Delta C-p) on the molecular weight of PS was investigated and an empirical equation was presented. (C) 1997 Elsevier Science Ltd.
Resumo:
Morphology, mechanical properties, and interfacial interaction of polyamide 1010/polypropylene (PA1010/ PP) blends compatibilized with polypropylene grafted with glycidyl methacrylate (PP-g-GMA) were studied. It was found that the size of the PP domains, tensile and impact strength of ternary blends, and adhesion fracture energy between two layers of PA1010 and PP were all significantly dependent on the PP-g-GMA contents in the PP layer. Correlations between morphology and related properties were sought. The improvements in properties have been attributed to chemical and physical interaction occurring between PA1010 and PP-g-GMA. (C) 1997 Elsevier Science Ltd.
Resumo:
The modification of polypropylene (PP) was accomplished by melt grafting glycidyl methacrylate (GMA) on its molecular chains. The resulting PP-g-GMA was used to prepare binary blends of polyamide 1010 (PA1010) and PP-g-GMA. Different blend morphologies were observed by scanning electron microscopy (SEM) according to the nature and content of PA1010 used. Comparing the PA1010/PP-g-GMA and PA1010/PP binary blends, the size of the domains of PP-g-GMA were much smaller than that of PP at the same compositions. It was found that mechanical properties of PA1010/PP-g-GMA blends were obviously better than that of PA1010/PP blends, and the mechanical properties were significantly influenced by wetting conditions for uncompatibilized and compatibilized blends. A different dependence of the flexural modulus on water was found for PA1010/PP and PA1010/PP-g-GMA. These behaviors could be attributed to the chemical interactions between the two components and good dispersion in PA1010/PP-g-GMA blends. Thermal and rheological analyses were performed to confirm the possible chemical reactions taking place during the blending process. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The overall isothermal crystallization kinetics for neat polypropylene and grafted polypropylene systems were investigated. The rate constants were corrected assuming the heterogeneous nucleation and three dimensional growth of polypropylene spherulites. A semiempirical equation for the radial growth rate of polypropylene spherulites was developed as a function of temperature, and was used to determine the number of effective nuclei of different temperatures. The number of nuclei in grafted samples was estimated to be 10(2)-10(3) times larger than that of neat polypropylene. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The morphology of polyamidelOlO/polypropylene blends was found to significantly depend upon the concentration of the compatibilizer[polypropylene-grafted-acrylic acid (PP-g-AA)]. A significant reduction in phase size was observed because of the interaction that existed between the PP-g-AA and polyamide. These interactions have been confirmed by several methods. The tensile mechanical properties and impact behavior of the prepared blends were investigated and correlated with scanning electron microscope (SEM) analysis of the fracture surfaces. It was found that PP-g-AA as the compatibilizer has a profound effect upon the properties of the blends. This behavior is attributed to a series of chemical and physico-chemical interactions taking place between the two components.
Resumo:
beta, beta-1, 3-Piopylenedithio-alpha, beta-unsaturated arylketones 2 via chemoselective 1,2-addition with allyl or benzyl Grignard reagents afforded the corresponding carbinols 3 and 4. Catalysed by silica gel, the carbinols 3 and 4 were converted to the beta,gamma-unsaturated arylketones 5, 6. The mechanism and reaction condition were discussed.
Resumo:
A comb polymer (CP350) with oligo-oxyethylene side chains of the type -(CH2CH2O)(7)CH3 was prepared from methyl vinyl ether/maleic anhydride copolymer and poly(ethylene glycol) methyl ether. The polymer can dissolve LiNO3 salt to form homogeneous amorphous polymer electrolyte. This electrolyte system was first found to have two class glass transitions, and the two T(g)s were observed to increase with increasing salt content. The ionic conduction was measured by using the complex impedance method, and conductivities were investigated as functions of temperature and salt concentration. At 25 degrees C, the ionic conductivity maximum of this system can get to 3.72 X 10(-5) S/cm at the [Li]/ [EO] ratio of 0.057. The appearance of the conductivity maximum has been interpreted as being due to the effect of T-g and the so called physical crosslinks. The temperature dependence of the ionic conductivity displaying non-Arrhenius behaviour can be analyzed using the Vogel-Tammann-Fulcher equation and interpreted on the basis of the configurational entropy model.