982 resultados para HETEROTROPHIC DENITRIFICATION


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objectives of this study are (1) to characterize the spatial and temporal variations in organic matter deposited in upwelling and related sediments (manifest in the palynoclast and organic-walled microplankton assemblages) and (2) to relate these variations to paleoenvironmental changes. A total of 40 samples from Holes 679D, 680B, 681B, 684B, 686B, and 687B were analyzed. Without exception, amorphogen dominates the palynoclast assemblages overwhelmingly. Influx of terrestrial particulate organic matter to the marine realm was extremely low. Levels of amorphogen swamp other palynoclast categories, and little significance can be attached to any variations observed. Microplankton dominate the palynomorph assemblages, with variable levels of subordinate foraminiferal test linings. Miospores are rare and are absent in most samples. Foraminiferal test linings are particularly abundant in the shallowest samples, which may reflect low surface-water paleotemperatures. Cysts of heterotrophic peridiniacean dinoflagellates (P-cysts) dominate the microplankton assemblages, with variable levels of cysts of autotrophic gonyaulacacean dinoflagellates (G-cysts). Samples dominated by P-cysts are derived largely from laminated, unbioturbated units deposited under the influence of strong upwelling. A lower abundance of P-cysts in some samples is restricted to unlaminated, bioturbated units deposited under oxygenated conditions. We conclude that the ratio of P-cysts to G-cysts is a useful indicator of variable upwelling strength. Detailed study of the variations in the microplankton assemblages offers one the greatest potential for palynological characteriztion and understanding of the upwelling system.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analysis was made of composition and content of nutrients, salts, particulate and dissolved organic matter, and various plankton groups in a series of samples collected by a 140-liter sampling bottle to depth up to 150 m at 4 equatorial stations between 97° and 154°W. Large and small phytoplankton, bacteria (aggregated and dispersed), heterotrophic flagellates, infusorians, radiolarians, foraminifers, fine filter-feeders, small and large, mostly herbivorous copepods, cyclopoids, predatory calanoids, and other predators were investigated separately. Trophic relations between these elements are established from personal and published data, and rate of their metabolism and some other physiological parameters are determined. Such functional characteristics as extent of satisfaction of food requirements of organisms belonging to various trophic groups, intensity of trophic relations, balance between production and consumption by individual elements of the community, ecological efficiency, and net and specific production of the groups distinguished, of individual trophic levels, of total zooplankton, and of the community as a whole are calculated. Variations of these characteristics along the equator with decreasing upwelling intensity are examined and their possible causes and mechanisms are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidation rate of 35S-thiosulfate under simulated natural conditions and abundance of thiosulfate-oxidizing bacteria in a redox zone of the Black Sea are lower during winter and spring than in summer, especially in halistatic regions. Oxidation of thiosulfate under natural conditions is performed chiefly by lithotropic thionic bacteria, whose activity is limited by low temperatures. Adding thiosulfate and readily available organic matter to water samples from the redox zone and raising temperature of water stimulated activity of heterotrophic thiosulfate-oxidizing bacteria. Oxidation of elemental sulfur tagged with 35S apparently invovled two stages: abiotic oxidation of thiosulfate and subsequent bacterial oxidation of thiosulfate to sulfate.