998 resultados para HEAD VOLUME
Resumo:
We evaluated the performance of an optical camera based prospective motion correction (PMC) system in improving the quality of 3D echo-planar imaging functional MRI data. An optical camera and external marker were used to dynamically track the head movement of subjects during fMRI scanning. PMC was performed by using the motion information to dynamically update the sequence's RF excitation and gradient waveforms such that the field-of-view was realigned to match the subject's head movement. Task-free fMRI experiments on five healthy volunteers followed a 2×2×3 factorial design with the following factors: PMC on or off; 3.0mm or 1.5mm isotropic resolution; and no, slow, or fast head movements. Visual and motor fMRI experiments were additionally performed on one of the volunteers at 1.5mm resolution comparing PMC on vs PMC off for no and slow head movements. Metrics were developed to quantify the amount of motion as it occurred relative to k-space data acquisition. The motion quantification metric collapsed the very rich camera tracking data into one scalar value for each image volume that was strongly predictive of motion-induced artifacts. The PMC system did not introduce extraneous artifacts for the no motion conditions and improved the time series temporal signal-to-noise by 30% to 40% for all combinations of low/high resolution and slow/fast head movement relative to the standard acquisition with no prospective correction. The numbers of activated voxels (p<0.001, uncorrected) in both task-based experiments were comparable for the no motion cases and increased by 78% and 330%, respectively, for PMC on versus PMC off in the slow motion cases. The PMC system is a robust solution to decrease the motion sensitivity of multi-shot 3D EPI sequences and thereby overcome one of the main roadblocks to their widespread use in fMRI studies.
Resumo:
Evidence of associations between single nutrients and head and neck cancer (HNC) is still more limited and less consistent than that for fruit and vegetables. However, clarification of the protective mechanisms of fruit and vegetables is important to our understanding of HNC etiology. We investigated the association between vitamin C intake from natural sources and cancer of the oral cavity/pharynx and larynx using individual-level pooled data from ten case-control studies (5,959 cases and 12,248 controls) participating in the International Head and Neck Cancer Epidemiology (INHANCE) consortium. After harmonization of study-specific exposure information via the residual method, adjusted odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were estimated using unconditional multiple logistic regression models on quintile categories of 'non-alcohol energy-adjusted' vitamin C intake. In the presence of heterogeneity of the estimated ORs among studies, we derived those estimates from generalized linear mixed models. Higher intakes of vitamin C were inversely related to oral and pharyngeal (OR = 0.54, 95% CI: 0.45-0.65, for the fifth quintile category versus the first one, p for trend<0.001) and laryngeal cancers (OR = 0.52, 95% CI: 0.40-0.68, p for trend = 0.006), although in the presence of heterogeneity among studies for both sites. Inverse associations were consistently observed for the anatomical subsites of oral and pharyngeal cancer, and across strata of age, sex, education, body mass index, tobacco, and alcohol, for both cancer sites. The inverse association of vitamin C intake from foods with HNC may reflect a protective effect on these cancers; however, we cannot rule out other explanations.
Resumo:
INTRODUCTION: Perfusion-CT (PCT) processing involves deconvolution, a mathematical operation that computes the perfusion parameters from the PCT time density curves and an arterial curve. Delay-sensitive deconvolution does not correct for arrival delay of contrast, whereas delay-insensitive deconvolution does. The goal of this study was to compare delay-sensitive and delay-insensitive deconvolution PCT in terms of delineation of the ischemic core and penumbra. METHODS: We retrospectively identified 100 patients with acute ischemic stroke who underwent admission PCT and CT angiography (CTA), a follow-up vascular study to determine recanalization status, and a follow-up noncontrast head CT (NCT) or MRI to calculate final infarct volume. PCT datasets were processed twice, once using delay-sensitive deconvolution and once using delay-insensitive deconvolution. Regions of interest (ROIs) were drawn, and cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) in these ROIs were recorded and compared. Volume and geographic distribution of ischemic core and penumbra using both deconvolution methods were also recorded and compared. RESULTS: MTT and CBF values are affected by the deconvolution method used (p < 0.05), while CBV values remain unchanged. Optimal thresholds to delineate ischemic core and penumbra are different for delay-sensitive (145 % MTT, CBV 2 ml × 100 g(-1) × min(-1)) and delay-insensitive deconvolution (135 % MTT, CBV 2 ml × 100 g(-1) × min(-1) for delay-insensitive deconvolution). When applying these different thresholds, however, the predicted ischemic core (p = 0.366) and penumbra (p = 0.405) were similar with both methods. CONCLUSION: Both delay-sensitive and delay-insensitive deconvolution methods are appropriate for PCT processing in acute ischemic stroke patients. The predicted ischemic core and penumbra are similar with both methods when using different sets of thresholds, specific for each deconvolution method.
Resumo:
BACKGROUND: Left atrial (LA) dilatation is associated with a large variety of cardiac diseases. Current cardiovascular magnetic resonance (CMR) strategies to measure LA volumes are based on multi-breath-hold multi-slice acquisitions, which are time-consuming and susceptible to misregistration. AIM: To develop a time-efficient single breath-hold 3D CMR acquisition and reconstruction method to precisely measure LA volumes and function. METHODS: A highly accelerated compressed-sensing multi-slice cine sequence (CS-cineCMR) was combined with a non-model-based 3D reconstruction method to measure LA volumes with high temporal and spatial resolution during a single breath-hold. This approach was validated in LA phantoms of different shapes and applied in 3 patients. In addition, the influence of slice orientations on accuracy was evaluated in the LA phantoms for the new approach in comparison with a conventional model-based biplane area-length reconstruction. As a reference in patients, a self-navigated high-resolution whole-heart 3D dataset (3D-HR-CMR) was acquired during mid-diastole to yield accurate LA volumes. RESULTS: Phantom studies. LA volumes were accurately measured by CS-cineCMR with a mean difference of -4.73 ± 1.75 ml (-8.67 ± 3.54%, r2 = 0.94). For the new method the calculated volumes were not significantly different when different orientations of the CS-cineCMR slices were applied to cover the LA phantoms. Long-axis "aligned" vs "not aligned" with the phantom long-axis yielded similar differences vs the reference volume (-4.87 ± 1.73 ml vs. -4.45 ± 1.97 ml, p = 0.67) and short-axis "perpendicular" vs. "not-perpendicular" with the LA long-axis (-4.72 ± 1.66 ml vs. -4.75 ± 2.13 ml; p = 0.98). The conventional bi-plane area-length method was susceptible for slice orientations (p = 0.0085 for the interaction of "slice orientation" and "reconstruction technique", 2-way ANOVA for repeated measures). To use the 3D-HR-CMR as the reference for LA volumes in patients, it was validated in the LA phantoms (mean difference: -1.37 ± 1.35 ml, -2.38 ± 2.44%, r2 = 0.97). Patient study: The CS-cineCMR LA volumes of the mid-diastolic frame matched closely with the reference LA volume (measured by 3D-HR-CMR) with a difference of -2.66 ± 6.5 ml (3.0% underestimation; true LA volumes: 63 ml, 62 ml, and 395 ml). Finally, a high intra- and inter-observer agreement for maximal and minimal LA volume measurement is also shown. CONCLUSIONS: The proposed method combines a highly accelerated single-breathhold compressed-sensing multi-slice CMR technique with a non-model-based 3D reconstruction to accurately and reproducibly measure LA volumes and function.
Resumo:
Meta-analyses are considered as an important pillar of evidence-based medicine. The aim of this review is to describe the main principles of a meta-analysis and to use examples of head and neck oncology to demonstrate their clinical impact and methodological interest. The major role of individual patient data is outlined, as well as the superiority of individual patient data over meta-analyses based on published summary data. The major clinical breakthrough of head and neck meta-analyses are summarized, regarding concomitant chemotherapy, altered fractionated chemotherapy, new regimens of induction chemotherapy or the use of radioprotectants. Recent methodological developments are described, including network meta-analyses, the validation of surrogate markers. Lastly, the future of meta-analyses is discussed in the context of personalized medicine.
Resumo:
Tämä työ käsittelee puutukkien tilavuuden mittaamista värikonenäön avulla. Värikuvat on saatu Simpeleellä olevan metsäteollisuusyrityksen hiomosta. Työssä esitetään perusteellisesti matemaattinen teoria, joka liittyy käytettyihin kuvankäsittelymenetelmiin, kuten luokitteluun, kohinan poistoon ja tukkien segmentointiin. Esitetyt menetelmät implementointiin käytännössä ja eri menetelmillä saatuja tuloksia vertailtiin keskenään. Kuvankäsittelyalgoritmit on implementoitu Matlab 6.0:n avulla. Pääasiassa käytettiin uusinta Image Processing Toolboxia, joka on versio 3.0. Tämä työn näkökulma on pääasiassa käytäntöön soveltava, koska metsäteollsuus on korkealla tasolla Suomessa ja siellä on paljon alan yrityksiä, joissa tässä työssä kehitettyä menetelmää voidaan hyödyntää.
Resumo:
BACKGROUND: Evidence for the possible effect of vitamin E on head and neck cancers (HNCs) is limited. METHODS: We used individual-level pooled data from 10 case-control studies (5959 cases and 12 248 controls) participating in the International Head and Neck Cancer Epidemiology (INHANCE) consortium to assess the association between vitamin E intake from natural sources and cancer of the oral cavity/pharynx and larynx. Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using unconditional logistic regression models applied to quintile categories of nonalcohol energy-adjusted vitamin E intake. RESULTS: Intake of vitamin E was inversely related to oral/pharyngeal cancer (OR for the fifth vs the first quintile category=0.59, 95% CI: 0.49-0.71; P for trend <0.001) and to laryngeal cancer (OR=0.67, 95% CI: 0.54-0.83, P for trend <0.001). There was, however, appreciable heterogeneity of the estimated effect across studies for oral/pharyngeal cancer. Inverse associations were generally observed for the anatomical subsites of oral and pharyngeal cancer and within covariate strata for both sites. CONCLUSION: Our findings suggest that greater vitamin E intake from foods may lower HNC risk, although we were not able to explain the heterogeneity observed across studies or rule out certain sources of bias.
Resumo:
A Agricultura de Precisão (AP) permite a utilização de diferentes ferramentas na obtenção de informações, e estas otimizam a tomada de decisão por parte do produtor, impactando positivamente na receita final. O objetivo do trabalho foi verificar o comportamento das variáveis produção (PROD), volume de copa (VC) e diâmetro de caule (DC) da variedade Maxi Gala com a utilização da técnica da cokrigagem. O experimento foi conduzido em uma área de 0,90 hectare de produção comercial da variedade Maxi Gala, na Fazenda São Paulino, da empresa RASIP, em Vacaria-RS, apresentando como coordenadas geográficas 28º31’17” de latitude sul e 50º49’17” de longitude oeste, durante as safras de 2010/2011 e 2011/2012. Coletaram-se 75 amostras para cada variável, em uma malha de 12 m na entrelinha e 10 m na linha. As variáveis avaliadas foram produção por planta , volume de copa e diâmetro de caule. Foram feitas a análise estatística descritiva dos dados e a análise espacial através dos semivariogramas. De posse dos modelos ajustados, realizou-se a interpolação pelo método da krigagem. Após, foi realizada a correlação simples dos parâmetros e elaborado os semivariogramas cruzados para interpolação, pela técnica da cokrigagem. Os parâmetros PROD versus DCapresentaram média correlação na variedade Maxi Gala, na safra de 2011. Nas safras de 2011 e 2012, os parâmetros VC versus DC também apresentaram média correlação. A técnica da cokrigagem pode ser uma ferramenta daAP a ser utilizada pela cultura da macieira no levantamento de informações.Verificou-se que houve resposta e redução na coleta de amostras das variáveis mais difíceis; na safra de 2011, reduziu-se a coleta de 15 amostras da PROD, e na safra de 2012, reduziu-se a coleta de 20 amostras do VC.
Resumo:
SCOPE: Only a few studies analyzed the role of allium vegetables with reference to head and neck cancers (HNC), with mixed results. We investigated the potential favorable role of garlic and onion within the International Head and Neck Cancer Epidemiology (INHANCE) Consortium. METHODS AND RESULTS: We analyzed pooled individual-level data from eight case-control studies, including 4590 cases and 7082 controls. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) for associations between garlic and onion intakes and HNC risk. Compared with no or low garlic use, the ORs of HNC were 0.95 (95% CI 0.71-1.27) for intermediate and 0.74 (95% CI 0.55-0.99) for high garlic use (p for trend = 0.02). The ORs of HNC for increasing categories of onion intake were 0.91 (95% CI 0.68-1.21) for >1 to ≤3 portions per week, and 0.83 (95% CI 0.60-1.13) for >3 portions per week (p for trend = 0.02), as compared to <1 portion per week. We found an inverse association between high onion intake and laryngeal cancer risk (OR = 0.69; 95% CI 0.54-0.88), but no significant association for other subsites. CONCLUSIONS: The results of this pooled-analysis support a possible moderate inverse association between garlic and onion intake and HNC risk. This article is protected by copyright. All rights reserved.
Resumo:
OBJETIVO: Avaliar as artérias cervicais (carótidas e vertebrais) por meio da angio-RM, utilizando-se diferentes dosagens e diluições de contraste paramagnético. MATERIAIS E MÉTODOS: Estudo prospectivo em 15 pacientes, com análise de 30 artérias carótidas comuns, 30 artérias carótidas internas, 30 artérias carótidas externas e 30 artérias vertebrais, utilizando-se diferentes volumes e dosagens de contraste paramagnético: grupo I - dose única (14 ml de Gd-DTPA); grupo II -dose dupla (28 ml de Gd-DTPA); grupo III - dose única e diluída a 50%. A injeção de contraste foi realizada com a utilização de bomba injetora e com velocidades de injeção de 2 ml/s (grupo I) e 3 ml/s (grupos II e III). Os segmentos arteriais foram analisados por três examinadores em consenso de forma subjetiva, avaliando-se o grau de visibilidade, intensidade de contrastação e definição de seus contornos. RESULTADOS: Em todos os itens analisados os pacientes do grupo II apresentaram melhor resultado (visibilização total, boa contrastação dos vasos e contornos bem definidos). No grupo I houve boa visibilização das artérias carótidas e vertebrais, porém a intensidade de contraste e a definição dos contornos apresentaram variabilidade qualitativa. O grupo III apresentou os piores resultados, com dificuldade de visibilização, intensidade de contrastação baixa e contornos mal definidos. CONCLUSÃO: Entre os grupos analisados, a técnica utilizando dose dupla de gadolínio é a que permite melhor avaliação das artérias cervicais. A utilização de contraste diluído prejudica a avaliação dos vasos do pescoço.
Resumo:
Free induction decay (FID) navigators were found to qualitatively detect rigid-body head movements, yet it is unknown to what extent they can provide quantitative motion estimates. Here, we acquired FID navigators at different sampling rates and simultaneously measured head movements using a highly accurate optical motion tracking system. This strategy allowed us to estimate the accuracy and precision of FID navigators for quantification of rigid-body head movements. Five subjects were scanned with a 32-channel head coil array on a clinical 3T MR scanner during several resting and guided head movement periods. For each subject we trained a linear regression model based on FID navigator and optical motion tracking signals. FID-based motion model accuracy and precision was evaluated using cross-validation. FID-based prediction of rigid-body head motion was found to be with a mean translational and rotational error of 0.14±0.21 mm and 0.08±0.13(°) , respectively. Robust model training with sub-millimeter and sub-degree accuracy could be achieved using 100 data points with motion magnitudes of ±2 mm and ±1(°) for translation and rotation. The obtained linear models appeared to be subject-specific as inter-subject application of a "universal" FID-based motion model resulted in poor prediction accuracy. The results show that substantial rigid-body motion information is encoded in FID navigator signal time courses. Although, the applied method currently requires the simultaneous acquisition of FID signals and optical tracking data, the findings suggest that multi-channel FID navigators have a potential to complement existing tracking technologies for accurate rigid-body motion detection and correction in MRI.