938 resultados para Growth factors locally produced
Resumo:
Treatment of cells with a variety of growth factors triggers a phosphorylation cascade that leads to activation of mitogen-activated protein kinases (MAPKs, also called extracellular signal-regulated kinases, or ERKs). We have identified a synthetic inhibitor of the MAPK pathway. PD 098059 [2-(2'-amino-3'-methoxyphenyl)-oxanaphthalen-4-one] selectively inhibited the MAPK-activating enzyme, MAPK/ERK kinase (MEK), without significant inhibitory activity of MAPK itself. Inhibition of MEK by PD 098059 prevented activation of MAPK and subsequent phosphorylation of MAPK substrates both in vitro and in intact cells. Moreover, PD 098059 inhibited stimulation of cell growth and reversed the phenotype of ras-transformed BALB 3T3 mouse fibroblasts and rat kidney cells. These results indicate that the MAPK pathway is essential for growth and maintenance of the ras-transformed phenotype. Further, PD 098059 is an invaluable tool that will help elucidate the role of the MAPK cascade in a variety of biological settings.
Resumo:
Incubating rat aortic smooth muscle cells with either platelet-derived growth factor BB (PDGF) or insulin-like growth factor I (IGF-I) increased the phosphorylation of PHAS-I, an inhibitor of the mRNA cap binding protein, eukaryotic initiation factor (eIF) 4E. Phosphorylation of PHAS-I promoted dissociation of the PHAS-I-eIF-4E complex, an effect that could partly explain the stimulation of protein synthesis by the two growth factors. Increasing cAMP with forskolin decreased PHAS-I phosphorylation and markedly increased the amount of eIF-4E bound to PHAS-I, effects consistent with an action of cAMP to inhibit protein synthesis. Both PDGF and IGF-I activated p70S6K, but only PDGF increased mitogen-activated protein kinase activity. Forskolin decreased by 50% the effect of PDGF on increasing p70S6K, and forskolin abolished the effect of IGF-I on the kinase. The effects of PDGF and IGF-I on increasing PHAS-I phosphorylation, on dissociating the PHAS-I-eIF-4E complex, and on increasing p70S6K were abolished by rapamycin. The results indicate that IGF-I and PDGF increase PHAS-I phosphorylation in smooth muscle cells by the same rapamycin-sensitive pathway that leads to activation of p70S6K.
Resumo:
Ciliary neurotrophic factor, oncostatin M, leukemia-inhibitory factor, and interleukin 6 are related cytokines that initiate signaling by homodimerizing the signal-transducing receptor component gp130 or by heterodimerizing gp130 with a gp130-related receptor component. Receptor dimerization in turn activates receptor-associated kinases of the Jak/Tyk family, resulting in the rapid tyrosine phosphorylation of several intracellular proteins, including those of two members of the signal transducers and activators of transcription (STAT) family--STAT1 and STAT3. Here we show that all cytokines that utilize gp130 sequentially induce two distinct forms of STAT3 in all responding cells examined, with the two forms apparently differing because of a time-dependent secondary serine/threonine phosphorylation involving an H7-sensitive kinase. While both STAT3 forms bind DNA and translocate to the nucleus, the striking time-dependent progression from one form to the other implies other important functional differences between the two forms. Granulocyte colony-stimulating factor, which utilizes a receptor highly related to gp130, also induces these two forms of STAT3. In contrast to a number of other cytokines and growth factors, all cytokines using gp130 and related signal transducers consistently and preferentially induce the two forms of STAT3 as compared with STAT1; this characteristic STAT activation pattern is seen regardless of which Jak/Tyk kinases are used in a particular response, consistent with the notion that the receptor components themselves are the primary determinants of which STATs are activated.
Resumo:
The rapid progress in the cloning of proteoglycan genes has enabled investigators to examine in depth the functional roles these polyhedric molecules play in the control of cell proliferation. Decorin, a leucine-rich proteoglycan expressed by most connective tissues, is a prototype molecule that regulates cellular growth via two mechanisms: modulation of growth factor activity and matrix assembly. We now provide direct evidence that human colon cancer cells stably transfected with decorin cDNA exhibit a marked suppression of the transformed phenotype: the cells have a reduced growth rate in vitro, form small colonies in soft agar, and do not generate tumors in scid/scid mice. Several independent clones are arrested in the G1 phase of the cell cycle, and their growth suppression can be restored by treatment with decorin antisense oligodeoxynucleotides. These effects are independent of growth factors and are not due to either clonal selection or integration site of the decorin gene. These findings correlate well with the observation that decorin gene expression is markedly up-regulated during quiescence. Decorin thus appears to be one component of a negative loop that controls cell growth.
Resumo:
The synthesis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], the immediate precursor of intracellular signals generated by calcium-mobilizing hormones and growth factors, is initiated by the conversion of phosphatidylinositol to phosphatidylinositol 4-phosphate [PtdIns(4)P] by phosphatidylinositol 4-kinase (PtdIns 4-kinase). Although cells contain several PtdIns 4-kinases, the enzyme responsible for regulating the synthesis of hormone-sensitive PtdIns(4,5)P2 pools has not been identified. In this report we describe the inhibitory effect of micromolar concentrations of wortmannin (WT) on the synthesis of hormone-sensitive PtdIns(4)P and PtdIns(4,5)P2 pools in intact adrenal glomerulosa cells, and the presence of a WT-sensitive PtdIns 4-kinase in adrenocortical extracts. In addition to its sensitivity to the PtdIns 3-kinase inhibitor WT, this enzyme is distinguished from the recognized membrane-bound PtdIns 4-kinases by its molecular size and weak membrane association. Inhibition of this PtdIns 4-kinase by WT results in rapid loss of the hormone-sensitive PtdIns(4,5)P2 pool in angiotensin II-stimulated glomerulosa cells. Consequently, WT treatment inhibits the sustained but not the initial increases in inositol 1,4,5-trisphosphate and cytoplasmic [Ca2+] in a variety of agonist-stimulated cells, including adrenal glomerulosa cells, NIH 3T3 fibroblasts, and Jurkat lymphoblasts. These results indicate that a specific WT-sensitive PtdIns 4-kinase is critical for the maintenance of the agonist-sensitive polyphosphoinositide pool in several cell types.
Resumo:
Preconditioning with sublethal ischemia protects against neuronal damage after subsequent lethal ischemic insults in hippocampal neurons. A pharmacological approach using agonists and antagonists at the adenosine A1 receptor as well as openers and blockers of ATP-sensitive K+ channels has been combined with an analysis of neuronal death and gene expression of subunits of glutamate and gamma-aminobutyric acid receptors, HSP70, c-fos, c-jun, and growth factors. It indicates that the mechanism of ischemic tolerance involves a cascade of events including liberation of adenosine, stimulation of adenosine A1 receptors, and, via these receptors, opening of sulfonylurea-sensitive ATP-sensitive K+ channels.
Resumo:
As células tronco espermatogoniais (SSCs) são caracterizadas pela capacidade de autorrenovação, proliferação e transmissão das informações genéticas. Em caninos a primeira tentativa de xenotransplante não obteve o sucesso da produção de espermatozoides, no entanto, há evidências de que as células testiculares xenogênicas podem ser transplantadas no testículo do animal hospedeiro, e gerar espermatozoides viáveis do doador. Portanto, este estudo tem como objetivo realizar o xenotransplante das células germinativas caninas em camundongos imunosuprimidos, e com isto promover à produção de espermatozoides caninos viáveis, geneticamente modificados. E por meio desta técnica, analisar a eficiência da espermatogênese pós-transplante. Células germinativas testiculares foram caracterizadas, isoladas e cultivadas de cães pré-púberes, por meio de sistemas de cultura de enriquecimento e fatores de crescimento. As células foram transduzidas com um gene repórter GFP e LacZ, e por um vetor lentiviral para indentificar as SSCs nos testículos receptores. As SSCs transduzidas foram transplantadas nos testículos de camundongos (C57BL/6) tratados com Busulfan, após diferentes períodos os animais receptores foram eutanasiados e analisados. Aos 10 dias de cultivo as células germinativas adultas foram positivas para CD49f, CD117, e com 5 dias uma expressão semelhante de GFRA1 e DAZL, demonstrando a presença de SSCs e algumas células em meiose. Transplantamos 105 células e 20-43% das células transplantadas foram identificadas na membrana basal dos túbulos seminíferos do animal receptor. Portanto, o transplante das células germinativas caninas, mostrou que a purificação e o cultivo realizados são possíveis para obter SSCs caninas, as quais colonizaram os túbulos seminíferos dos camundongos imunodeficientes e mantiveram-se vivas na membrana basal por 90 dias após transplante, mesmo que estes animais tenham distância filogenética
Resumo:
As neoplasias mieloproliferativas (NMPs) BCR-ABL1 negativas compreendem a mielofibrose primária (PMF), trombocitemia essencial (TE) e a policitemia vera (PV). A patogênese e progressão dessas NMPs não estão completamente elucidadas. As metaloproteinases de matriz (MMPs) degradam a matriz extracelular, ativando citocinas e fatores de crescimento que, por sua vez, participam da tumorigênese e angiogênese. O objetivo deste estudo foi avaliar a relação da expressão gênica das MMPs, TIMPs, HIF1-α e SPARC com os marcadores angiogênicos bFGF e VEGFA em pacientes com MF e TE, considerando o status mutacional; bem como avaliar a regulação desses genes em camundongos submetidos à hipóxia, e em modelos HIF1-α(-/-) e VHL(-/-). Foram incluídos 21 pacientes com MF, 21 com MF pós-TE, 6 com MF pós-PV, 23 com TE e 78 indivíduos controle. As análises realizadas foram: dosagem sérica e expressão de RNAm de MMP2, MMP9, TIMP1, TIMP2 e SPARC, hemograma, determinação da proteína C reativa ultrassensível, determinação das concentrações de VEGFA e bFGF e avaliação das mutações nos genes JAK2, cMPL e CALR. A avaliação da densidade microvascular da medula óssea foi feita em 30 dos pacientes incluídos. Os pacientes com MFP, MFPTE e TE apresentaram maior expressão de MMP2, SPARC, TIMP1, TIMP2 e bFGF quando comparados aos seus controles (P<0,05), enquanto MMP9 foi mais expressa nos pacientes com MFPTE e TE (P= 0,011 e P=0,047, respectivamente). Os pacientes com TE apresentaram maior expressão de HIF1-α e VEGFA em relação ao grupo controle (P<0,05). Pacientes com MF JAK2V617F positivos apresentaram maiores concentrações de MMP9, TIMP2, bFGF e VEGFA quando comparados aos pacientes portadores de mutações na CALR (P<0,05). Os pacientes com TE JAK2V617F positivos apresentaram maiores concentrações de MMP2 e TIMP2 (P=0,049 e P=0,020, respectivamente). As concentrações das proteínas estudadas não apresentaram correlação com a carga alélica de JAK2V617F e nem com a densidade microvascular da medula óssea. Células de medula óssea de camundongos submetidos à hipóxia apresentaram maior expressão de MMP2 e TIMP1 comparados aos camundongos em normóxia. Camundongos VHL(-/-) apresentaram aumento na expressão dos genes MMP2, MMP9, TIMP1, TIMP2 e VEGFA. Diferentemente, embriões HIF1-α(-/-) não foram considerados um bom modelo para este estudo devido ao envolvimento das MMPs na embriogênese/organogênese. Frente aos resultados encontrados, pode-se sugerir que a maior expressão de MMP2, SPARC e de bFGF estão associadas às NMPs. A mutação JAK2V617F foi associada a maiores concentrações de MMPs, TIMP2 VEGFA e bFGF. HIF1-α foi mais expresso na PV e na TE, sugerindo uma possível regulação da expressão das MMPs e TIMPs nessas doenças.
Resumo:
Il est reconnu que la protéine filamenteuse intermédiaire Nestine est exprimée lors du processus de cicatrisation et du remodelage fibrotique. De plus, nous avons identifié l’expression de la Nestine au sein de deux populations distinctes qui sont directement impliquées dans les réponses de fibroses réparative et réactive. Ainsi, une population de cellules souches neurales progénitrices résidentes du coeur de rat adulte exprime la Nestine et a été identifiée à titre de substrat de l’angiogenèse et de la neurogenèse cardiaque. Également, la Nestine est exprimée par les myofibroblastes cicatriciels cardiaques et il a été établi que la protéine filamenteuse intermédiaire joue un rôle dans la prolifération de ces cellules. Ainsi, l’objectif général de cette thèse était de mieux comprendre les évènements cellulaires impliqués dans la réponse neurogénique des cellules souches neurales progénitrices résidentes cardiaques Nestine(+) (CSNPRCN(+)) lors de la fibrose réparative cardiaque et d’explorer si l’apparition de fibroblastes Nestine(+) est associée avec la réponse de fibrose réactive secondaire du remodelage pulmonaire. Une première publication nous a permis d’établir qu’il existe une régulation à la hausse de l’expression de la GAP43 (growth associated protein 43) et que cet événement transitoire précède l’acquisition d’un phénotype neuronal par les CSNPRCN(+) lors du processus de cicatrisation cardiaque chez le rat ayant subi un infarctus du myocarde. De plus, la surimposition de la condition diabétique de type 1, via l’injection unique de Streptozotocine chez le rat, abolit la réponse neurogénique des CSNPRCN(+), qui est normalement induite à la suite de l’ischémie cardiaque ou de l’administration de 6-hydroxydopamine. Le second article a démontré que le développement aigu de la fibrose pulmonaire secondaire de l’infarctus du myocarde chez le rat est associé avec une augmentation de l’expression protéique de la Nestine et de l’apparition de myofibroblastes pulmonaires Nestine(+). Également, le traitement de fibroblastes pulmonaires avec des facteurs de croissances peptidiques pro-fibrotiques a augmenté l’expression de la Nestine par ces cellules. Enfin, le développement initial de la condition diabétique de type 1 chez le rat est associé avec une absence de fibrose réactive pulmonaire et à une réduction significative des niveaux protéiques et d’ARN messager de la Nestine pulmonaire. Finalement, la troisième étude représentait quant à elle un prolongement de la deuxième étude et a alors examiné le remodelage pulmonaire chronique chez un modèle établi d’hypertension pulmonaire. Ainsi, les poumons de rats adultes mâles soumis à l’hypoxie hypobarique durant 3 semaines présentent un remodelage vasculaire, une fibrose réactive et une augmentation des niveaux d’ARN messager et de la protéine Nestine. De plus, nos résultats ont démontré que la Nestine, plutôt que l’alpha-actine du muscle lisse, est un marqueur plus approprié des diverses populations de fibroblastes pulmonaires activés. Également, nos données suggèrent que les fibroblastes pulmonaires activés proviendraient en partie de fibroblastes résidents, ainsi que des processus de transition épithélio-mésenchymateuse et de transition endothélio-mésenchymateuse. Collectivement, ces études ont démontré que des populations distinctes de cellules Nestine(+) jouent un rôle majeur dans la fibrose réparative cardiaque et la fibrose réactive pulmonaire.
Resumo:
Background. Low back pain is an increasing global health problem, which is associated with intervertebral disc (IVD) damage and degeneration. Major changes occur in the nucleus pulposus (NP), with the degradation of the extracellular matrix (ECM).1 Further studies showed that growth factors from transforming growth factor β (TGFβ) and bone morphogenic proteins (BMP) family may induce chondrogenic differentiation of mesenchymal stem cells (MSC).2 Focusing on non-viral gene therapies and their possible translation into the clinics, we investigated if GDF6 (syn. BMP13 or CDMP2) can induce regeneration of degraded NP. We hypothesized that IVD transfected with plasmid over-expressing GDF6 also up-regulates other NP- and chondrogenic cell markers and enhances ECM deposition. Methods. Bovine nucleus pulposus (bNPC) and annulus fibrosus cells (bAFC) were harvested from bovine coccygeal IVD. Primary cells were then electroporized with plasmid GDF6 (Origene, vector RG211366) by optimizing parameters using the Neon Transfection system (Life Technologies, Basel). After transfection, cells were cultured in 2D monolayer or 3D alginate beads for 7, 14 or 21 days. Transfection efficiency of pGDF6 was analyzed by immunohistochemistry and fluorescent microscopy. Cell phenotype was quantified by real-time RT-PCR. To test a non-viral gene therapy applied directly to 3D whole organ culture, coccygeal bovine IVDs were harvested as previously described. Bovine IVDs were transfected by injection of plasmid GDF6 into the center. Electroporation was performed with ECM830 Square Wave Electroporation System (Harvard Apparatus, MA) using 2-needle array electrode or tweezertrodes. 72 h after tranfection discs were fixed and cryosectioned and analyzed by immunofluorescence against GDF6. Results. RT-PCR and immunohistochemistry confirmed up-regulation of GFP and GDF6 in the primary bNPC/bAFC culture. The GFP-tagged GDF6 protein, however, was not visible, possibly due to failure of dimer formation as a result of fusion structure. Organ IVD culture transfection revealed GDF6 positive staining in the center of the disc using 2-needle array electrode. Results from tweezertrodes did not show any GDF6 positive cells. Conclusion. Non-viral transfection is an appealing approach for gene therapy as it fulfills the translational safety aspects of transiency and lacks the toxic effects of viral transduction. We identified novel parameters to successfully transfect primary bovine IVD cells. For transfection of whole IVD explants electroporation parameters need to be further optimized. Acknowledgements. This project was funded by the Lindenhof Foundation (Funds “Research & Teaching”) Project no. 13-02-F. The imaging part of this study was performed with the facility of the Microscopy Imaging Center (MIC), University of Bern. References. Roughly PJ (2004): Spine (Phila), 29:2691-2699 Clarke LE, McConell JC, Sherratt MJ, Derby B, Richardson SM, Hoyland JA (2014), Arthritis Research & Therapy, 16:R67
Resumo:
BACKGROUND The intervertebral disc (IVD) has limited self-healing potential and disc repair strategies require an appropriate cell source such as progenitor cells that could regenerate the damaged cells and tissues. The objective of this study was to identify nucleus pulposus-derived progenitor cells (NPPC) and examine their potential in regenerative medicine in vitro. METHODS Nucleus pulposus cells (NPC) were obtained from 1-year-old bovine coccygeal discs by enzymatic digestion and were sorted for the angiopoietin-1 receptor Tie2. The obtained Tie2- and Tie2+ fractions of cells were differentiated into osteogenic, adipogenic, and chondrogenic lineages in vitro. Colony-forming units were prepared from both cell populations and the colonies formed were analyzed and quantified after 8 days of culture. In order to improve the preservation of the Tie2+ phenotype of NPPC in monolayer cultures, we tested a selection of growth factors known to have stimulating effects, cocultured NPPC with IVD tissue, and exposed them to hypoxic conditions (2 % O2). RESULTS After 3 weeks of differentiation culture, only the NPC that were positive for Tie2 were able to differentiate into osteocytes, adipocytes, and chondrocytes as characterized by calcium deposition (p < 0.0001), fat droplet formation (p < 0.0001), and glycosaminoglycan content (p = 0.0095 vs. Tie2- NPC), respectively. Sorted Tie2- and Tie2+ subpopulations of cells both formed colonies; however, the colonies formed from Tie2+ cells were spheroid in shape, whereas those from Tie2- cells were spread and fibroblastic. In addition, Tie2+ cells formed more colonies in 3D culture (p = 0.011) than Tie2- cells. During expansion, a fast decline in the fraction of Tie2+ cells was observed (p < 0.0001), which was partially reversed by low oxygen concentration (p = 0.0068) and supplementation of the culture with fibroblast growth factor 2 (FGF2) (p < 0.0001). CONCLUSIONS Our results showed that the bovine nucleus pulposus contains NPPC that are Tie2+. These cells fulfilled formally progenitor criteria that were maintained in subsequent monolayer culture for up to 7 days by addition of FGF2 or hypoxic conditions. We propose that the nucleus pulposus represents a niche of precursor cells for regeneration of the IVD.
Resumo:
Archaeological excavations in northern Madagascar during the first half of the 20th century have revealed the presence of a former prosperous civilisation known as the Rasikajy civilisation. Little is known about the origin of this civilisation and how and when they first arrived in Madagascar. The most striking evidence for the Rasikajy civilisation comes from excavations at a necropolis in Vohemar located along the northeast coast, where more than 600 tombs containing spectacular objects were unearthed in the 1940s (Vernier & Millot 1971). The findings in the tombs included, amongst others, Chinese ceramics, silver and gold jewellery, iron weapons, glassware, bronze mirrors and chlorite-schist objects (ibid.). The latter objects were produced from chlorite schist mined at quarries in northern and eastern Madagascar and there is evidence that jewellery and iron objects were also produced by the Rasikajy from locally available raw material. Chlorite-schist objects have not only been found in coastal sites in Madagascar, but also in the Comores and eastern Africa suggesting an active engagement of the Rasikajy in western Indian Ocean trade. Our re-evaluation of published literature on archaeological sites in northern Madagascar indicates that the majority of Chinese ceramics found in the tombs at Vohemar dates from the 15th and first half of the 16th century with some dating back to the 14th century or earlier. Our comparative analysis of burial objects at Vohemar shows that locally produced chlorite-schist tripod vessels exhibit remarkable resemblances to ancient Chinese bronze ritual tripod vessels. The objects encountered in the tombs and their positions with respect to the body indicate that the Rasikajy practiced burial rites similar to those practised in the past in China. Our re-evaluation of the literature suggests that communities with Chinese roots were present in northeastern Madagascar prior to the arrival of the first Europeans in 1500 and participated in the Indian Ocean trade network. The demise of the Rasikajy civilisation seems to have occurred in the second half of the 16th century when production of chlorite-schist objects ceased. It is still unclear why this occurred.
Resumo:
We expressed the full-length CD44v2-10 isoform in SKHep1 cells, a nonmetastatic human hepatocellular carcinoma cell line that does not express any endogenous CD44v isoforms. In SCID mice, expression of CD44v2-10 by SKHep1 cells had no effect on s.c. primary tumor development but caused pulmonary metastases in 41% (7 of 17) of animals compared with control SKHep1 cells (0 of 16; P < 0.01). CD44v2-10 expression by SKHep1 cells resulted in enhanced heparan sulfate (HS) attachment and an enhanced capacity to bind heparin-binding growth factors. Mutation of the v3 domain to prevent HS attachment and growth factor binding abolished the metastatic phenotype, demonstrating that HS modification of CD44v2-10 plays a critical role in the development of metastases in this model. However, in vitro proliferation, motility, and invasion were not altered by CD44v2-10 expression.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-05
Resumo:
Reptiles change heart rate and blood flow patterns in response to heating and cooling, thereby decreasing the behavioural cost of thermoregulation. We tested the hypothesis that locally produced vasoactive substances, nitric oxide and prostaglandins, mediate the cardiovascular response of reptiles to heat. Heart rate and blood pressure were measured in eight crocodiles (Crocodylus porosus) during heating and cooling and while sequentially inhibiting nitric-oxide synthase and cyclooxygenase enzymes. Heart rate and blood pressure were significantly higher during heating than during cooling in all treatments. Power spectral density of heart rate and blood pressure increased significantly during heating and cooling compared to the preceding period of thermal equilibrium. Spectral density of heart rate in the high frequency band (0.19-0.70 Hz) was significantly greater during cooling in the saline treatment compared to when nitric-oxide synthase and cyclooxygenase enzymes were inhibited. Cross spectral analysis showed that changes in blood pressure preceded heart rate changes at low frequencies (