952 resultados para Gröbner Basis
Resumo:
"These papers were originally printed in the New York Times of November 20, 21, 22, 23, 24, 25, 27, 28, 30, and December 2, 4, 6, 9, 12, 15, and 18, 1916."--Publisher's note.
Resumo:
Includes bibliographical references and index.
Resumo:
Mode of access: Internet.
Resumo:
"First printed March, 1914, one thousand and five hundred copies."
Resumo:
Includes index.
Resumo:
Mode of access: Internet.
Resumo:
Bibliography: p. 425-457.
Resumo:
Mode of access: Internet.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
The large number of protein kinases makes it impractical to determine their specificities and substrates experimentally. Using the available crystal structures, molecular modeling, and sequence analyses of kinases and substrates, we developed a set of rules governing the binding of a heptapeptide substrate motif (surrounding the phosphorylation site) to the kinase and implemented these rules in a web-interfaced program for automated prediction of optimal substrate peptides, taking only the amino acid sequence of a protein kinase as input. We show the utility of the method by analyzing yeast cell cycle control and DNA damage checkpoint pathways. Our method is the only available predictive method generally applicable for identifying possible substrate proteins for protein serine/threonine kinases and helps in silico construction of signaling pathways. The accuracy of prediction is comparable to the accuracy of data from systematic large-scale experimental approaches.
Resumo:
Importin-alpha is the nuclear import receptor that recognizes cargo proteins carrying conventional basic monopartite and bipartite nuclear localization sequences (NLSs) and facilitates their transport into the nucleus. Bipartite NLSs contain two clusters of basic residues, connected by linkers of variable lengths. To determine the structural basis of the recognition of diverse bipartite NLSs by mammalian importin-alpha, we co-crystallized a non-autoinhibited mouse receptor protein with peptides corresponding to the NLSs from human retinoblastoma protein and Xenopus laevis phosphoprotein N1N2, containing diverse sequences and lengths of the linker. We show that the basic clusters interact analogously in both NLSs, but the linker sequences adopt different conformations, whereas both make specific contacts with the receptor. The available data allow us to draw general conclusions about the specificity of NLS binding by importin-alpha and facilitate an improved definition of the consensus sequence of a conventional basic/bipartite NLS (KRX10-12KRRK) that can be used to identify novel nuclear proteins.
Resumo:
Macrophages and B cells are activated by unmethylated CpG-containing sequences in bacterial DNA. The lack of activity of self DNA has generally been attributed to CpG suppression and methylation, although the role of methylation is in doubt. The frequency of CpG in the mouse genome is 12.5% of Escherichia coli, with unmethylated CpG occurring at similar to3% the frequency of E. coli. This suppression of CpG alone is insufficient to explain the inactivity of self DNA; vertebrate DNA was inactive at 100 mug/ml, 3000 times the concentration at which E. coli DNA activity was observed. We sought to resolve why self DNA does not activate macrophages. Known active CpG motifs occurred in the mouse genome at 18% of random occurrence, similar to general CpG suppression. To examine the contribution of methylation, genomic DNAs were PCR amplified. Removal of methylation from the mouse genome revealed activity that was 23-fold lower than E. coli DNA, although there is only a 7-fold lower frequency of known active CpG motifs in the mouse genome. This discrepancy may be explained by G-rich sequences such as GGAGGGG, which potently inhibited activation and are found in greater frequency in the mouse than the E. coli genome. In summary, general CpG suppression, CpG methylation, inhibitory motifs, and saturable DNA uptake combined to explain the inactivity of self DNA. The immunostimulatory activity of DNA is determined by the frequency of unmethylated stimulatory sequences within an individual DNA strand and the ratio of stimulatory to inhibitory sequences.
Resumo:
Histological sections of primary segmental arteries and associated interarterial anastomoses and secondary vessels from the long-finned eel Anguilla reinhardtii were examined by light and transmission electron microscopy. Interarterial anastomoses were found to originate from the primary vasculature as depressions through the tunica intima and media, from where they ran perpendicularly to the adventitial layer, before coiling extensively. From here the anastomoses travelled a relatively linear path in the outer margin of the adventitia to anastomose with a secondary vessel running in parallel with the primary counterpart. In contrast to findings from other species, secondary vessels had a structure quite similar to that of primary vessels; they were lined by endothelial cells on a continuous basement membrane, with a single layer of smooth muscle cells surrounding the vessel. Smooth muscle cells were also found in the vicinity of interarterial anastomoses in the adventitia, but these appeared more longitudinally orientated. The presence of smooth muscle cells on all aspects of the secondary circulation suggests that this vascular system is regulated in a similar manner as the primary vascular system. Because interarterial anastomoses are structurally integrated with the primary vessel from which they originate, it is anticipated that flow through secondary vessels to some extent is affected by the vascular tone of the primary vessel. Immunohistochemical studies showed that primary segmental arteries displayed moderate immunoreactivity to antibodies against 5-hydroxytryptamine and substance P, while interarterial anastomoses and secondary vessels showed dense immunoreactivity. No immunoreactivity was observed on primary or secondary arteries against neuropeptide Y or calcitonin gene-related peptide.
Resumo:
Sulfite-oxidizing molybdoenzymes convert the highly reactive and therefore toxic sulfite to sulfate and have been identified in insects, animals, plants, and bacteria. Although the well studied enzymes from higher animals serve to detoxify sulfite that arises from the catabolism of sulfur-containing amino acids, the bacterial enzymes have a central role in converting sulfite formed during dissimilatory oxidation of reduced sulfur compounds. Here we describe the structure of the Starkeya novella sulfite dehydrogenase, a heterodimeric complex of the catalytic molybdopterin subunit and a c-type cytochrome subunit, that reveals the molecular mechanism of intramolecular electron transfer in sulfite-oxidizing enzymes. The close approach of the two redox centers in the protein complex (Mo-Fe distance 16.6 angstrom) allows for rapid electron transfer via tunnelling or aided by the protein environment. The high resolution structure of the complex has allowed the identification of potential through-bond pathways for electron transfer including a direct link via Arg-55A and/or an aromatic-mediated pathway. A potential site of electron transfer to an external acceptor cytochrome c was also identified on the SorB subunit on the opposite side to the interaction with the catalytic SorA subunit.