913 resultados para Golden Sunlight Mine
Resumo:
Background - The onset of bipolar disorder is influenced by the interaction of genetic and environmental factors. We previously found that a large increase in sunlight in springtime was associated with a lower age of onset. This study extends this analysis with more collection sites at diverse locations, and includes family history and polarity of first episode. Methods - Data from 4037 patients with bipolar I disorder were collected at 36 collection sites in 23 countries at latitudes spanning 3.2 north (N) to 63.4 N and 38.2 south (S) of the equator. The age of onset of the first episode, onset location, family history of mood disorders, and polarity of first episode were obtained retrospectively, from patient records and/or direct interview. Solar insolation data were obtained for the onset locations. Results - There was a large, significant inverse relationship between maximum monthly increase in solar insolation and age of onset, controlling for the country median age and the birth cohort. The effect was reduced by half if there was no family history. The maximum monthly increase in solar insolation occurred in springtime. The effect was one-third smaller for initial episodes of mania than depression. The largest maximum monthly increase in solar insolation occurred in northern latitudes such as Oslo, Norway, and warm and dry areas such as Los Angeles, California. Limitations - Recall bias for onset and family history data. Conclusions - A large springtime increase in sunlight may have an important influence on the onset of bipolar disorder, especially in those with a family history of mood disorders.
Resumo:
In this study, we report a facile polymeric citrate strategy for the synthesis of Cr,La-codoped SrTiO3 nanoparticles. The synthesized samples were well characterized by various analytical techniques. The UV-vis DRS studies reveal that the absorption edge shifts towards the visible light region after doping with Cr, which is highly beneficial for absorbing the visible light in the solar spectrum. More attractively, codoping with La exhibits greatly enhanced photocatalytic activity for the degradation of Rhodamine B under sunlight irradiation. The optimum photocatalytic activity at 1 atom% of Cr,La-codoped SrTiO3 nanoparticles is almost 6 times higher than that of pure SrTiO3 nanoparticles and 3 times higher than that of Cr-doped SrTiO3 nanoparticles. The high photocatalytic performance in the present photocatalytic system is due to codoping with La, which acts as a most effective donor for stabilizing Cr3+ in Cr,La-codoped SrTiO3 nanoparticles. More importantly, the synthesized photocatalysts possess high reusability. A proposed mechanism for the enhanced photocatalytic activity of Cr,La-codoped SrTiO3 nanoparticles was also investigated by trapping experiments. Therefore, our results not only demonstrate the highly efficient visible light photocatalytic activity of the Cr,La-codoped SrTiO3 photocatalyst, but also enlighten the codoping strategy in the design and development of advanced photocatalytic materials for energy and environmental applications.
Resumo:
Developing novel heterojunction photocatalysts is a powerful strategy for improving the separation efficiency of photogenerated charge carriers, which is attracting the intense research interest in photocatalysis. Herein we report a highly efficient hetero/nanojunction consisting of Ag2CO3 nanoparticles grown on layered g-C3N4 nanosheets synthesized via a facile and template free in situ precipitation method. The UV–vis diffuse reflectance studies revealed that the synthesized Ag2CO3/g-C3N4 hetero/nanojunctions exhibit a broader and stronger light absorption in the visible light region, which is highly beneficial for absorbing the visible light in the solar spectrum. The optimum photocatalytic activity of Ag2CO3/g-C3N4 at a weight content of 10% Ag2CO3 for the degradation of Rhodamine B was almost 5.5 and 4 times as high as that of the pure Ag2CO3 and g-C3N4, respectively. The enhanced photocatalytic activity of the Ag2CO3/g-C3N4 hetero/nanojunctions is due to synergistic effects including the strong visible light absorption, large specific surface area, and high charge transfer and separation efficiency. More importantly, the high photostability and low use of the noble metal silver which reduces the cost of the material. Therefore, the synthesized Ag2CO3/g-C3N4 hetero/nanojunction photocatalyst is a promising candidate for energy storage and environment protection applications.
Resumo:
Sequential pattern mining is an important subject in data mining with broad applications in many different areas. However, previous sequential mining algorithms mostly aimed to calculate the number of occurrences (the support) without regard to the degree of importance of different data items. In this paper, we propose to explore the search space of subsequences with normalized weights. We are not only interested in the number of occurrences of the sequences (supports of sequences), but also concerned about importance of sequences (weights). When generating subsequence candidates we use both the support and the weight of the candidates while maintaining the downward closure property of these patterns which allows to accelerate the process of candidate generation.
Resumo:
Mainstream gentrification research predominantly examines experiences and motivations of the middle-class gentrifier groups, while overlooking experiences of non-gentrifying groups including the impact of in situ local processes on gentrification itself. In this paper, I discuss gentrification, neighbourhood belonging and spatial distribution of class in Istanbul by examining patterns of belonging both of gentrifiers and non-gentrifying groups in historic neighbourhoods of the Golden Horn/Halic. I use multiple correspondence analysis (MCA), a methodology rarely used in gentrification research, to explore social and symbolic borders between these two groups. I show how gentrification leads to spatial clustering by creating exclusionary practices and eroding social cohesion, and illuminate divisions that are inscribed into the physical space of the neighbourhood.
Resumo:
In recent years, surface plasmon-induced photocatalytic materials with tunable mesoporous framework have attracted considerable attention in energy conversion and environmental remediation. Herein we report a novel Au nanoparticles decorated mesoporous graphitic carbon nitride (Au/mp-g-C3N4) nanosheets via a template-free and green in situ photo-reduction method. The synthesized Au/mp-g-C3N4 nanosheets exhibit a strong absorption edge in visible and near-IR region owing to the surface plasmon resonance effect of Au nanoparticles. More attractively, Au/mp-g-C3N4 exhibited much higher photocatalytic activity than that of pure mesoporous and bulk g-C3N4 for the degradation of rhodamine B under sunlight irradiation. Furthermore, the photocurrent and photoluminescence studies demonstrated that the deposition of Au nanoparticles on the surface of mesoporous g-C3N4 could effectively inhibit the recombination of photogenerated charge carriers leading to the enhanced photocatalytic activity. More importantly, the synthesized Au/mp-g-C3N4 nanosheets possess high reusability. Hence, Au/mp-g-C3N4 could be promising photoactive material for energy and environmental applications.
Resumo:
Herein, we demonstrate the synthesis of highly efficient Fe-doped graphitic carbon nitride (g-C3N4) nanosheets via a facile and cost effective method. The synthesized Fe-doped g-C3N4 nanosheets were well characterized by various analytical techniques. The results revealed that the Fe exists mainly in the +3 oxidation state in the Fe-doped g-C3N4 nanosheets. Fe doping of g-C3N4 nanosheets has a great influence on the electronic and optical properties. The diffuse reflectance spectra of Fe-doped g-C3N4 nanosheets exhibit red shift and increased absorption in the visible light range, which is highly beneficial for absorbing the visible light in the solar spectrum. More significantly, the Fe-doped g-C3N4 nanosheets exhibit greatly enhanced photocatalytic activity for the degradation of Rhodamine B under sunlight irradiation. The photocatalytic activity of 2 mol% Fe-doped g-C3N4 nanosheets is almost 7 times higher than that of bulk g-C3N4 and 4.5 times higher than that of pure g-C3N4 nanosheets. A proposed mechanism for the enhanced photocatalytic activity of Fe-doped g-C3N4 nanosheets was investigated by trapping experiments. The synthesized photocatalysts are highly stable even after five successive experimental runs. The enhanced photocatalytic performance of Fe-doped g-C3N4 nanosheets is due to high visible light response, large surface area, high charge separation and charge transfer. Therefore, the Fe-doped g-C3N4 photocatalyst is a promising candidate for energy conversion and environmental remediation.
Resumo:
Az Európai Unió megújuló gazdasági kormányzási rendszerének egyik meghatározó pillére a diszkrecionális gazdaságpolitikával szemben megfogalmazott szabályalapúság lesz. A minden korábbinál erősebb és vélhetően hatékonyabb szabályok bevezetésének legelkötelezettebb híve Németország. Az elmúlt évtizedekben a folyó költségvetési kiadások hiányból történő finanszírozásának tilalmát előíró aranyszabályt inkább kevesebb, mint több sikerrel alkalmazó Németország most arra vállalkozott, hogy nem csak saját hatáskörben vezeti be az ún. adósságféket, hanem követendő példaként állítja azt a többi tagország elé is. Írásunkban az aranyszabály, illetve az adósságfék előnyeit és hátrányait vesszük számba a német tapasztalatok felhasználásával. / === / The need to strengthen rules-based fiscal policy has emerged as a widely shared consensus amongst policy-makers in the recent economic and financial crisis. Germany has become the most devoted advocator of the new regime, where more innovative and effective fiscal rules are supposed to play an even bigger role than before. Germany supports such a move however not only in rhetoric but also in practice. It decided to abandon its several decade old golden rule and to adopt a more sophisticated one, the so-called debt-brake. This article provides a cost-benefit analysis of both the previous and the new fiscal rule.
Resumo:
Pythagoras, Plato and Euclid’s paved the way for Classical Geometry. The idea of shapes that can be mathematically defined by equations led to the creation of great structures of modern and ancient civilizations, and milestones in mathematics and science. However, classical geometry fails to explain the complexity of non-linear shapes replete in nature such as the curvature of a flower or the wings of a Butterfly. Such non-linearity can be explained by fractal geometry which creates shapes that emulate those found in nature with remarkable accuracy. Such phenomenon begs the question of architectural origin for biological existence within the universe. While the concept of a unifying equation of life has yet to be discovered, the Fibonacci sequence may establish an origin for such a development. The observation of the Fibonacci sequence is existent in almost all aspects of life ranging from the leaves of a fern tree, architecture, and even paintings, makes it highly unlikely to be a stochastic phenomenon. Despite its wide-spread occurrence and existence, the Fibonacci series and the Rule of Golden Proportions has not been widely documented in the human body. This paper serves to review the observed documentation of the Fibonacci sequence in the human body.
Resumo:
While mining is a major component of the northern Canadian economy, including the contemporary mixed economy of Aboriginal communities, it often leaves legacies of environmental and economic transformation that persist after closure. The legacies of historical mines in northern Canada challenge industry claims of sustainability. This thesis addresses how industrial mineral development and closure continue to affect local environments and economies after abandonment. The abandoned Pine Point mine in the Northwest Territories provides a case study for explaining the ongoing relationships among land cover, land use, and the post-industrial landscape. Drawing from landscape ecology and micropolitical ecology, I adopt an interdisciplinary approach to examine environmental and socioeconomic changes in the wake of industrial development and closure at Pine Point. The results show that passive reclamation is not sufficient for restoring ecological function in a subarctic environment. Land use, however, persists as land users adapt to the post-industrial landscape despite grave concern about its environmental condition. If mining is to be considered sustainable, decommissioning and reclamation must explicitly account for long-term environmental transformation as well as ongoing post-industrial land use, particularly in Aboriginal contexts.
Resumo:
General note: Title and date provided by Bettye Lane.
Resumo:
Saipan, situated about 15° N. and 146° E., is one of the larger and more southerly of the Mariana Islands. The 15 small islands of this chain are strung along an eastwardly convex ridge for more than 400 miles north to south, midway between Honshu and New Guinea and about 1,200 miles east of the Philippines. Paralleling this ridge 60 to 100 miles further east is a deep submarine trench, beyond which lies the Pacific Basin proper. To the west is the Philippine Sea, generally deeper than 2,000 fathoms. The trench coincides with a zone of negative gravity anomalies, earthquake foci occur at increasing depths westward from it, and silica- and alumina-rich volcanic rocks characterize the emergent island chain itself. The contrast between these features and those of the Pacific Basin proper to the east is held to favor the conclusion that the Mariana island arc and trench define the structural and petrographic front of Asia.