932 resultados para Godunov-VanLeer schemes
Resumo:
There is an increasing demand for Unmanned Aerial Systems (UAS) to carry suspended loads as this can provide significant benefits to several applications in agriculture, law enforcement and construction. The load impact on the underlying system dynamics should not be neglected as significant feedback forces may be induced on the vehicle during certain flight manoeuvres. The constant variation in operating point induced by the slung load also causes conventional controllers to demand increased control effort. Much research has focused on standard multi-rotor position and attitude control with and without a slung load. However, predictive control schemes, such as Nonlinear Model Predictive Control (NMPC), have not yet been fully explored. To this end, we present a novel controller for safe and precise operation of multi-rotors with heavy slung load in three dimensions. The paper describes a System Dynamics and Control Simulation Toolbox for use with MATLAB/SIMULINK which includes a detailed simulation of the multi-rotor and slung load as well as a predictive controller to manage the nonlinear dynamics whilst accounting for system constraints. It is demonstrated that the controller simultaneously tracks specified waypoints and actively damps large slung load oscillations. A linear-quadratic regulator (LQR) is derived and control performance is compared. Results show the improved performance of the predictive controller for a larger flight envelope, including aggressive manoeuvres and large slung load displacements. The computational cost remains relatively small, amenable to practical implementations.
Resumo:
This paper considers the relationship between patent law and plant breeders' rights in light of modern developments in biotechnology. It examines how a number of superior courts have sought to manage the tensions and conflicts between these competing schemes of intellectual property protection. Part 1 considers the High Court of Australia case of Grain Pool of Western Australia v the Commonwealth dealing with Franklin barley. Part 2 examines the significance of the Supreme Court of the United States decision in JEM Ag Supply Inc v Pioneer Hi-Bred International Inc with respect to utility patents and hybrid seed. Part 3 considers the Supreme Court of Canada case of Harvard College v the Commissioner of Patents dealing with the transgenic animal, oncomouse, and discusses its implications for the forthcoming appeal from the Federal Court case of Percy Schmeiser v Monsanto.
Resumo:
Diffusion weighted magnetic resonance (MR) imaging is a powerful tool that can be employed to study white matter microstructure by examining the 3D displacement profile of water molecules in brain tissue. By applying diffusion-sensitized gradients along a minimum of 6 directions, second-order tensors can be computed to model dominant diffusion processes. However, conventional DTI is not sufficient to resolve crossing fiber tracts. Recently, a number of high-angular resolution schemes with greater than 6 gradient directions have been employed to address this issue. In this paper, we introduce the Tensor Distribution Function (TDF), a probability function defined on the space of symmetric positive definite matrices. Here, fiber crossing is modeled as an ensemble of Gaussian diffusion processes with weights specified by the TDF. Once this optimal TDF is determined, the diffusion orientation distribution function (ODF) can easily be computed by analytic integration of the resulting displacement probability function.
Resumo:
This paper presents data on residents’ use of common stairways and lifts (vertical circulation spaces) in multi-storey apartment buildings (MSABs) in Brisbane, Australia. Vertical movement is a defining aspect of multi-storey living and the energy consumed by lifts contributes significantly to the energy budget of the typical MSAB. The purpose is to investigate whether a reappraisal of vertical circulation design, through the lens of residents’ requirements, might contribute to energy reductions in this building type. Data was gathered on a theoretical sample of MSAB ranging from five decades old to very recent schemes. 90 residents were surveyed about their day-to-day experiences of circulation and access systems. The results showed that residents mainly chose to use the stairs for convenience and exercise. Building management regimes that limited residents’ access to collective spaces were the main impediment to discretionary stair use. Only two buildings did not have fully enclosed stairwells and these had the highest stair usage, suggesting that stair design, and building governance are two areas that might be worthy of attention. The more that circulation design is focussed on limiting access, the less opportunities there are for personal choice, incidental social interaction and casual surveillance of collective spaces. The more that design of vertical circulation spaces in MSAB meets residents’ needs the less likely they are to be reliant on continuous energy supply for normal functioning.
Resumo:
Diffusion weighted magnetic resonance imaging is a powerful tool that can be employed to study white matter microstructure by examining the 3D displacement profile of water molecules in brain tissue. By applying diffusion-sensitized gradients along a minimum of six directions, second-order tensors (represented by three-by-three positive definite matrices) can be computed to model dominant diffusion processes. However, conventional DTI is not sufficient to resolve more complicated white matter configurations, e.g., crossing fiber tracts. Recently, a number of high-angular resolution schemes with more than six gradient directions have been employed to address this issue. In this article, we introduce the tensor distribution function (TDF), a probability function defined on the space of symmetric positive definite matrices. Using the calculus of variations, we solve the TDF that optimally describes the observed data. Here, fiber crossing is modeled as an ensemble of Gaussian diffusion processes with weights specified by the TDF. Once this optimal TDF is determined, the orientation distribution function (ODF) can easily be computed by analytic integration of the resulting displacement probability function. Moreover, a tensor orientation distribution function (TOD) may also be derived from the TDF, allowing for the estimation of principal fiber directions and their corresponding eigenvalues.
Resumo:
Sexual harassment of women in medicine in the Australian medical profession is a serious problem which presents substantial legal, ethical and cultural questions for the medical profession. Women have enforceable legal rights to gender equality and freedom from sexual harassment in the workplace. Both individual offenders and their employers face significant legal consequences for sexual harassment. Individual medical practitioners and employers need to understand their legal and ethical responsibilities in this context. This article analyses four areas of legal liability in every State and Territory which apply to individual offenders and employers: criminal law, discrimination law, civil law, and contract law. It also analyses ethical duties owed by doctors towards their colleagues under professional regulatory schemes. The analysis shows that individual doctors and their employers have clear legal and ethical obligations to prevent sexual harassment. On legal and ethical grounds, medical employers, professional colleges and associations, and regulators need to improve gender equality and professional culture in medicine. A five-step model for cultural change is proposed.
Resumo:
Due to the existing of many prestressed members in the structural system, the interdependent behavior of all prestressed members is the main concern in the analysis of the pretension process. A thorough investigation of this mutual effect is essential for an effective, reliable, and optimal analysis. Focus on this aspect, this paper presents an investigation of the interdependent behavior of all prestressed members in the whole structural system based on influence matrix (IFM). Four different types of IFM are introduced. Two different solving methods are brought forth to analyze the pretension process. The direct solving method solves for the accurate solution, whereas the iterative solving method repeatedly amends to achieve an approximate solution. A numerical example is then conducted. The result shows that various kinds of complicated batched and repeated tensioning schemes can be analyzed reliably, effectively, and completely based on IFM.
Resumo:
Individuals with limb amputation fitted with conventional socket-suspended prostheses often experience socket-related discomfort leading to a significant decrease in quality of life. Bone-anchored prostheses are increasingly acknowledged as viable alternative method of attachment of artificial limb. In this case, the prosthesis is attached directly to the residual skeleton through a percutaneous fixation. To date, a few osseointegration fixations are commercially available. Several devices are at different stages of development particularly in Europe and the US.[1-15] Clearly, surgical procedures are currently blooming worldwide. Indeed, Australia and Queensland in particular have one of the fastest growing populations. Previous studies involving either screw-type implants or press-fit fixations for bone-anchorage have focused on fragmented biomechanics aspects as well as the clinical benefits and safety of the procedure. However, very few publications have synthetized this information and provided an overview of the current developments in bone-anchored prostheses worldwide, let alone in Australia. The purposes of the presentation will be: 1. To provide an overview of the state-of-art developments in bone-anchored prostheses with as strong emphasis on the design of fixations, treatment, benefits, risks as well as future opportunities and challenges, 2. To present the current international developments of procedures for bone-anchored prostheses in terms of numbers of centers, number of cases and typical case-mix, 3. To highlight the current role Australia is playing as a leader worldwide in terms of growing population, broadest range of case-mix, choices of fixations, development of reimbursement schemes, unique clinical outcome registry for evidence-based practice, cutting-edge research, consumer demand and general public interest.
Resumo:
Individuals with limb amputation fitted with conventional socket-suspended prostheses often experience socket-related discomfort leading to a significant decrease in quality of life. Bone-anchored prostheses are increasingly acknowledged as viable alternative method of attachment of artificial limb. In this case, the prosthesis is attached directly to the residual skeleton through a percutaneous fixation. To date, a few osseointegration fixations are commercially available. Several devices are at different stages of development particularly in Europe and the US. [1-15] Clearly, surgical procedures are currently blooming worldwide. Indeed, Australia and Queensland, in particular, have one of the fastest growing populations. Previous studies involving either screw-type implants or press-fit fixations for bone-anchorage have focused on biomechanics aspects as well as the clinical benefits and safety of the procedure. In principle, bone-anchored prostheses should eliminate lifetime expenses associated with sockets and, consequently, potentially alleviate the financial burden of amputation for governmental organizations. Unfortunately, publications focusing on cost-effectiveness are sparse. In fact, only one study published by Haggstrom et al (2012), reported that “despite significantly fewer visits for prosthetic service the annual mean costs for osseointegrated prostheses were comparable with socket-suspended prostheses”. Consequently, governmental organizations such as Queensland Artificial Limb Services (QALS) are facing a number of challenges while adjusting financial assistance schemes that should be fair and equitable to their clients fitted with bone-anchored prostheses. Clearly, more scientific evidence extracted from governmental databases is needed to further consolidate the analyses of financial burden associated with both methods of attachment (i.e., conventional sockets prostheses, bone-anchored prostheses). The purpose of the presentation will be to share the current outcomes of a cost-analysis study lead by QALS. The specific objectives will be: • To outline methodological avenues to assess the cost-effectiveness of bone-anchored prostheses compared to conventional sockets prostheses, • To highlight the potential obstacles and limitations in cost-effectiveness analyses of bone-anchored prostheses, • To present cohort results of a cost-effectiveness (QALY vs cost) including the determination of fair Incremental cost-effectiveness Ratios (ICER) as well as cost-benefit analysis focusing on the comparing costs and key outcome indicators (e.g., QTFA, TUG, 6MWT, activities of daily living) over QALS funding cycles for both methods of attachment.
Resumo:
Fractional differential equations are becoming increasingly used as a powerful modelling approach for understanding the many aspects of nonlocality and spatial heterogeneity. However, the numerical approximation of these models is demanding and imposes a number of computational constraints. In this paper, we introduce Fourier spectral methods as an attractive and easy-to-code alternative for the integration of fractional-in-space reaction-diffusion equations described by the fractional Laplacian in bounded rectangular domains ofRn. The main advantages of the proposed schemes is that they yield a fully diagonal representation of the fractional operator, with increased accuracy and efficiency when compared to low-order counterparts, and a completely straightforward extension to two and three spatial dimensions. Our approach is illustrated by solving several problems of practical interest, including the fractional Allen–Cahn, FitzHugh–Nagumo and Gray–Scott models, together with an analysis of the properties of these systems in terms of the fractional power of the underlying Laplacian operator.
Resumo:
Measurements of particle concentrations and distributions in terms of number, surface area, and mass were performed simultaneously at eight sampling points within a symmetric street canyon of an Italian city. The aim was to obtain a useful benchmark for validation of wind tunnel experiments and numerical schemes: to this purpose, the influence of wind directions and speeds was considered. Particle number concentrations (PNCs) were higher on the leeward side than the windward side of the street canyon due to the wind vortex effect. Different vertical PNC profiles were observed between the two canyon sides depending on the wind direction and speed at roof level. A decrease in particle concentrations was observed with increasing rooftop wind speed, except for the coarse fraction indicating a possible particle resuspension due to the traffic and wind motion. This study confirms that particle concentration fields in urban street canyons are strongly influenced by traffic emissions and meteorological parameters, especially wind direction and speed.
Resumo:
The applicability of ELISA kits was evaluated as an alternative to monitor bensulfuron-methyl and simetryn behavior in paddy water under intermittent (Plot 1) and continuous (Plot 2) irrigation schemes. Simetryn concentrations in both plots decreased exponentially from the peak of the first day. However, the simetryn kit systematically underestimated by a factor of 0.79 as compared to the GC method. Bensulfuron-methyl concentrations exhibited similar dissipation kinetics in paddy water and the drainage water. The bensulfuron-methyl kit was capable of distinguishing spatial variations of concentrations in the paddy field. The ELISA kits clearly indicated differences in the loss of both herbicides between the two plots and therefore may be useful for evaluating the water management practice of pesticide runoff control in paddy fields.
Resumo:
In this paper, we present a machine learning approach to measure the visual quality of JPEG-coded images. The features for predicting the perceived image quality are extracted by considering key human visual sensitivity (HVS) factors such as edge amplitude, edge length, background activity and background luminance. Image quality assessment involves estimating the functional relationship between HVS features and subjective test scores. The quality of the compressed images are obtained without referring to their original images ('No Reference' metric). Here, the problem of quality estimation is transformed to a classification problem and solved using extreme learning machine (ELM) algorithm. In ELM, the input weights and the bias values are randomly chosen and the output weights are analytically calculated. The generalization performance of the ELM algorithm for classification problems with imbalance in the number of samples per quality class depends critically on the input weights and the bias values. Hence, we propose two schemes, namely the k-fold selection scheme (KS-ELM) and the real-coded genetic algorithm (RCGA-ELM) to select the input weights and the bias values such that the generalization performance of the classifier is a maximum. Results indicate that the proposed schemes significantly improve the performance of ELM classifier under imbalance condition for image quality assessment. The experimental results prove that the estimated visual quality of the proposed RCGA-ELM emulates the mean opinion score very well. The experimental results are compared with the existing JPEG no-reference image quality metric and full-reference structural similarity image quality metric.
Resumo:
In this paper, we present a decentralized dynamic load scheduling/balancing algorithm called ELISA (Estimated Load Information Scheduling Algorithm) for general purpose distributed computing systems. ELISA uses estimated state information based upon periodic exchange of exact state information between neighbouring nodes to perform load scheduling. The primary objective of the algorithm is to cut down on the communication and load transfer overheads by minimizing the frequency of status exchange and by restricting the load transfer and status exchange within the buddy set of a processor. It is shown that the resulting algorithm performs almost as well as a perfect information algorithm and is superior to other load balancing schemes based on the random sharing and Ni-Hwang algorithms. A sensitivity analysis to study the effect of various design parameters on the effectiveness of load balancing is also carried out. Finally, the algorithm's performance is tested on large dimensional hypercubes in the presence of time-varying load arrival process and is shown to perform well in comparison to other algorithms. This makes ELISA a viable and implementable load balancing algorithm for use in general purpose distributed computing systems.
Resumo:
In high-speed aerospace vehicles, supersonic flutter is a well-known phenomenon of dynamic instability to which external skin panels are prone. In theory, the instability stage is expressed by the 'flutter critical parameter' Q(crit), which is a function of the stiffness-, and dynamic pressure parameters. For a composite skin panel, Q(crit) can be maximised by lay-up optimisation. Repeated-sublaminate lay-up schemes possess good potential for economical lay-up optimisation because the corresponding effort is limited to a family of sublaminates of few layers only. When Q(crit) is obtained for all sublaminates of a family, and the sublaminates ranked accordingly, the resulting ranking reveals not only the optimum lay-up, but also the near-optimum lay-ups, which are useful design alternatives, and the inferior lay-ups which should be avoided. In this paper, we examine sublaminate-ranking characteristics for a composite panel prone to supersonic flutter. In particular, we consider a simple supported midplane-symmetrical rectangular panel of typical aspect ratio alpha and flow angle psi, and for four-layered sublaminates, obtain the Q(crit)-based rankings for a wide range of the number of repeats, r. From the rankings, we find that an optimum lay-up can exist for which the outermost layer is oriented wide of, rather than along, the flow. Furthermore, for many lay-ups other than the optimum and the inferior, we see that as r increases, Q(crit) undergoes significant change in the course of converging. To reconcile these findings, eigenvalue-coalescence characteristics are discussed in detail for specific cases.