992 resultados para Glacier (Icebreaker)
Ground-penetrating radar (GPR) point measurements of ice thickness on Hallstaetter Gletscher in 2009
Resumo:
Summary: The stratigraphy of the Shackleton Range established by Stephenson (1966) and Clarkson (1972) was revised by results of the German Expedition GEISHA 1987/88. The "Turnpike Bluff Group" does not form a stratigraphic unit. The stratigraphic correlation of its formations is still a matter of discussion. The following four formations are presumed to belong to different units: The Stephenson Bastion Formation and Wyeth Heights Formation are probably of Late Precambrian age. The Late Precambrian Watts Needle Formation, which lies unconformably on the Read Group, is an independant unit which has to be separated from the "Turnpike Bluff Group". The Mount Wegener Formation has been thrusted over the Watts Needle Formation. Early Cambrian fossils (Oldhamia sp., Epiphyton sp., Botomaella (?) sp. and echinoderms) were found in the Mt. Wegener Formation in the Read Mountains. The Middle Cambrian trilobite shales on Mount Provender, which form the Haskard Highlands Formation, are possibly in faulted contact with the basement complex (Pioneers and Stratton Groups). They are overlain by the Blaiklock Glacier Group, for which an Ordovician age is indicated by trilobite tracks and trails, low inclination of the paleomagnetic field and the similarity to the basal units of the Table Mountain Quartzite in South Africa. The Watts Needle Formation represents epicontinental shelf sediments, the Mount Wegener Formation was deposited in a (continental) back-arc environment, and the Blaiklock Glacier Group is a typical molasse sediment of the Ross Orogen.
Resumo:
The objective of this study is the production of an Alpine Permafrost Index Map (APIM) covering the entire European Alps. A unified statistical model that is based on Alpine-wide permafrost observations is used for debris and bedrock surfaces across the entire Alps. The explanatory variables of the model are mean annual air temperatures, potential incoming solar radiation and precipitation. Offset terms were applied to make model predictions for topographic and geomorphic conditions that differ from the terrain features used for model fitting. These offsets are based on literature review and involve some degree of subjective choice during model building. The assessment of the APIM is challenging because limited independent test data are available for comparison and these observations represent point information in a spatially highly variable topography. The APIM provides an index that describes the spatial distribution of permafrost and comes together with an interpretation key that helps to assess map uncertainties and to relate map contents to their actual expression in terrain. The map can be used as a first resource to estimate permafrost conditions at any given location in the European Alps in a variety of contexts such as research and spatial planning. Results show that Switzerland likely is the country with the largest permafrost area in the Alps, followed by Italy, Austria, France and Germany. Slovenia and Liechtenstein may have marginal permafrost areas. In all countries the permafrost area is expected to be larger than the glacier-covered area.
Resumo:
Mixed assemblages of Pliocene and Quaternary foraminifera occur within the Quaternary succession of the CRP-1 drillhole. Pliocene foraminifera are not present in the lowermost Unit 4.1. are rare in Unit 3.1 and 2.3, are relatively common in Units 2.2 and 2.1, and are absent in Unit 1.1. Fifteen and twelve species were documented in two of the samples from Units 2.2 and 2.1 respectively. A census count of foraminifera in a sample at 26.89 mbsf (Unit 2.2) indicated that 39% of the tests were from a Pliocene source, with the remaining 61% tests assigned to the in situ Quaternary assemblage. There appears to be a close correlation between the stratigraphic distribution of ice-rafted sediments and the test number and diversity of Pliocene taxa. It is concluded that Pliocene assemblages were not derived from submarine outcrops on Roberts Ridge, but are more likely to have been rafted to the site via major trunk valley drainage systems such as operated within the Mackay and Ferrar glacial valleys. The co-occurrence of marine biota (including foraminifera), fossil wood, pollen, and igneous clasts in the Quaternary succession of CRP-l, points to the marine and terrestrial facies of the Pliocene Sirius Group as a likely source. A major episode of erosion and transport of sediment into the offshore marine basins at about ~1 Ma may have been triggered by dynamism in the ice sheet-glacier system, an episode of regional uplift in the Transantarctic Mountains, sea level oscillations and associated changes in the land-to-sea drainage baselines, or some combination of these factors.
Resumo:
The ice thickness of 15 South Tyrolean glaciers has been surveyed with two different types of radar systems between 1996 and 2014 within various research projects. For all glaciers apart from Weissbrunnferner, the Laser scan DEMs of the South Tyrolean glacier inventories had been taken as basis for the data processing. Earlier data has been measured with the Narod Sensor using a central frequency of 6.5 MHz, later data was recorded with a GSSI SIR 3000 system. The positions have been measured with a Garmin handheld GPS. The snow height at the time of the measurement was recorded by snow probing. The majority of the glaciers have been surveyed between 2009 and 2014, 9 glaciers in the year 2013. The methods for measurements and calculation of ice thickness are described in the various reports.
Resumo:
The Vernagtferner in the Ötztaler Alps (Tirol) has been mapped after terrestrial-photogrammetric surveying by Sebastian Finsterwalder in 1889, Otto von Gruber in 1912, and Heinrich Schatz in 1938. The new, four-colored map in the scale 1: 10.000 enclosed in this issue was composed from aerial photographs of 1969. It was conceived as topographicaI map with additional geodetic and glaciological content. The methods of survey are explained and the means of cartographic representation are discussed.
Resumo:
The Byrd Glacier discontinuity us a major boundary crossing the Ross Orogen, with crystalline rocks to the north and primarily sedimentary rocks to the south. Most models for the tectonic development of the Ross Orogen in the central Transantarctic Mountains consits of two-dimensional transects across the belt, but do not adress the major longitudinal contrast at Byrd Glacier. This paper presents a tectonic model centering on the Byrd Glacier discontinuity. Rifting in the Neoproterozoic producede a crustal promontory in the craton margin to the north of Byrd Glacier. Oblique convergence of the terrane (Beardmore microcontinent) during the latest Neroproterozoic and Early Cambrian was accompanied by subduction along the craton margin of East Antarctica. New data presented herein in the support of this hypothesis are U-Pb dates of 545.7 ± 6.8 Ma and 531.0 ± 7.5 Ma on plutonic rocks from the Britannia Range, subduction stepped out, and Byrd Glacier. After docking of the terrane, subduction stepped out, and Byrd Group was deposited during the Atdabanian-Botomian across the inner margin of the terrane. Beginning in the upper Botomian, reactivation of the sutured boundaries of the terrane resulted in an outpouring of clastic sediment and folding and faulting of the Byrd Group.
Resumo:
Depositional environments, stratigraphic relations, and 35 new AMS 14C dates at Cape Shpindler, Yugorski Peninsula, help constrain the late Pleistocene glacial and environmental history of the southern Kara Sea region. Fifteen- to fifty-meter-high coastal exposures reveal a complex package of shallow marine, fluvial, glacial, and postglacial deposits, and are documented here in a 19-km-long cross-section and eight vertical sections. The shallow marine (Unit A), estuarine or prodeltaic (Unit B), and fluvio-deltaic (Unit C) deposits contain an interglacial molluscan fauna, yield radiocarbon dates greater than 40 ka, and may correspond with a regional sea-level highstand during the Eemian. These units are overlain by a diamicton (Unit D), and are pervasively deformed by folds and low- to high-angle faults into a stacked glaciotectonic accretionary complex. The diamicton (Unit D) is a subglacial till, and associated massive ground ice with deformed debris bands (Unit E) appears to be relict glacier ice. Glaciotectonic structures document both southward- and northward-directed glacier movement. Above the till and associated glaciotectonic horizons lies 0- to 11-m-thick postglacial deposits of peatland, eolian, fluvial, and primarily lacustrine origin (Unit F). The postglacial deposits yield radiocarbon ages of 12.8 to 0.8 ka. Thus, at least one regional glaciation is prominently represented in the stratigraphy, and occurred probably after the Eemian but before 12.8 ka. We infer that the bulk of the glacial record corresponds with southward advance by an early Weichselian Kara Sea Ice Sheet, in agreement with other recently documented, regional records from Yamal Peninsula and the Pechora Basin. The timing and source of northward-directed glacier ice are less well constrained. Across the broad expanse of the Eurasian Arctic, Quaternary stratigraphy is still sparsely documented. The new data from Cape Shpindler fill a spatial gap in paleoenvironmental research.
Resumo:
Foraminifera were examined in recent (<100 years) fine-grained glaciomarine muds from surface sediments and cores from Nordensheld Bay, Novaja Zemlja, and Hornsund and Bellsund, Spitsbergen. This study presents the first data on modern foraminifera distribution for fjord environments in Novaja Zemlja, Russia. The data are interpreted with reference to the distribution of foraminiferal near Svalbard and the Barents Sea. In Nordensheld Bay, live and dead Nonionellina labradorica and Islandiella norcrossi are most abundant in the outer fjord. Cassidulina reniforme and Allogromiina spp. dominate in the middle and inner fjord. The dominant species are dissimilar to species occurring in other areas of the Barents Sea region, with the exception of Svalbard fjords. The number of live foraminifera (24 to 122 tests/10 cm1) in outer and middle Nordensheld Bay corresponds with values known from the open Barents Sea. However, the biomass (0.03 mg/10 cm**3) is two orders of magnitude less due to smaller foraminiferal test size, which in glaciomarine sediments reflects the absence of larger species, paucity of large specimens, and high occurrence of juvenile foraminifera. The smaller size indicates an opportunistic response to environmental stress due to glacier proximity. The presence of Quinqueloculina stalkeri is diagnostic of glaciomarine environments in fjords of Novaja Zemlja and Svalbard.
Resumo:
The Schwarzmilzferner, a small glacier in the Allgäuer Alps is, for the first time, investigated in detail with geodetic methods. The changes of the glacier since 1850 are reconstructed and doc- umented. The Orthophotomap Schwarzmilzferner 1971 shows approximately the current expan- sion of the glacier as a suitable basis for future work.