897 resultados para Genetics translocation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: Diagnosis of soft tissue sarcomas can be difficult. It can be aided by detection of specific genetic aberrations in many cases. This study assessed the utility of a molecular genetics/cytogenetics service as part of the routine diagnostic service at the Royal Marsden Hospital. METHODS: A retrospective audit was performed over a 15-month period to evaluate the diagnostic usefulness for soft tissue sarcomas with translocations of fluorescence in situ hybridisation (FISH) and reverse-transcriptase PCR (RT-PCR) in paraffin-embedded (PE) material. Results were compared with histology, and evaluated. RESULTS: Molecular investigations were performed on PE material in 158 samples (total 194 RT-PCR and 174 FISH tests), of which 85 were referral cases. Synovial sarcoma, Ewing sarcoma and low-grade fibromyxoid sarcoma were the most commonly tested tumours. Myxoid liposarcoma showed the best histological and molecular concordance, and alveolar rhabdomyosarcoma showed the best agreement between methods. FISH had a higher sensitivity for detecting tumours (73%, compared with 59% for RT-PCR) with a better success rate than RT-PCR, although the latter was specific in identifying the partner gene for each fusion. In particular, referral blocks in which methods of tissue fixation and processing were not certain resulted in higher RT-PCR failure rates. CONCLUSIONS: FISH and RT-PCR on PE tissue are practical and effective ancillary tools in the diagnosis of soft tissue sarcomas. They are useful in confirming doubtful histological diagnoses and excluding malignant diagnoses. PCR is less sensitive than FISH, and the use of both techniques is optimal for maximising the detection rate of translocation-positive sarcomas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Our purpose in this report was to define genes and pathways dysregulated as a consequence of the t(4;14) in myeloma, and to gain insight into the downstream functional effects that may explain the different prognosis of this subgroup.Experimental Design: Fibroblast growth factor receptor 3 (FGFR3) overexpression, the presence of immunoglobulin heavy chain-multiple myeloma SET domain (IgH-MMSET) fusion products and the identification of t(4;14) breakpoints were determined in a series of myeloma cases. Differentially expressed genes were identified between cases with (n = 55) and without (n = 24) a t(4;14) by using global gene expression analysis.Results: Cases with a t(4;14) have a distinct expression pattern compared with other cases of myeloma. A total of 127 genes were identified as being differentially expressed including MMSET and cyclin D2, which have been previously reported as being associated with this translocation. Other important functional classes of genes include cell signaling, apoptosis and related genes, oncogenes, chromatin structure, and DNA repair genes. Interestingly, 25% of myeloma cases lacking evidence of this translocation had up-regulation of the MMSET transcript to the same level as cases with a translocation.Conclusions: t(4;14) cases form a distinct subgroup of myeloma cases with a unique gene signature that may account for their poor prognosis. A number of non-t(4;14) cases also express MMSET consistent with this gene playing a role in myeloma pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The c-kit proto-oncogen (CD117) has been described to be present in normal and neoplastic hemopoietic cells including both myeloid and lymphoid lineages. Among the normal lymphoid cells CD117 expression would be restricted to a small subset of NK-cells, and to early T-cell precursors and it is not expressed by normal B-cells. Regarding chronic lymphoproliferative disorders the only data provided up to now suggests that CD117 expression is restricted to cases of Hodgkin's disease and anaplastic large-cell lymphoma. In the present paper we describe a case of a B-cell chronic lymphoproliferative disorder carrying the t(14:18) translocation as demonstrated by molecular studies, in which the flow cytometric immunophenotypic analysis of both peripheral blood and bone marrow samples revealed the expression of high amounts of the CD117 antigen in the surface of the clonal B-cell population. Further studies are necessary to explore both the functional role of c-kit expression in the neoplastic B-cells from this patient and its potential utility for the diagnosis and follow-up of patients with B-cell non-Hodgkin's lymphoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UNLABELLED: Translocation of effector proteins via a type III secretion system (T3SS) is a widespread infection strategy among Gram-negative bacterial pathogens. Each pathogen translocates a particular set of effectors that subvert cell signaling in a way that suits its particular infection cycle. However, as effector unbalance might lead to cytotoxicity, the pathogens must employ mechanisms that regulate the intracellular effector concentration. We present evidence that the effector EspZ controls T3SS effector translocation from enteropathogenic (EPEC) and enterohemorrhagic (EHEC) Escherichia coli. Consistently, an EPEC espZ mutant is highly cytotoxic. Following ectopic expression, we found that EspZ inhibited the formation of actin pedestals as it blocked the translocation of Tir, as well as other effectors, including Map and EspF. Moreover, during infection EspZ inhibited effector translocation following superinfection. Importantly, while EspZ of EHEC O157:H7 had a universal "translocation stop" activity, EspZ of EPEC inhibited effector translocation from typical EPEC strains but not from EHEC O157:H7 or its progenitor, atypical EPEC O55:H7. We found that the N and C termini of EspZ, which contains two transmembrane domains, face the cytosolic leaflet of the plasma membrane at the site of bacterial attachment, while the extracellular loop of EspZ is responsible for its strain-specific activity. These results show that EPEC and EHEC acquired a sophisticated mechanism to regulate the effector translocation.

IMPORTANCE: Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are important diarrheal pathogens responsible for significant morbidity and mortality in developing countries and the developed world, respectively. The virulence strategy of EPEC and EHEC revolves around a conserved type III secretion system (T3SS), which translocates bacterial proteins known as effectors directly into host cells. Previous studies have shown that when cells are infected in two waves with EPEC, the first wave inhibits effector translocation by the second wave in a T3SS-dependent manner, although the factor involved was not known. Importantly, we identified EspZ as the effector responsible for blocking protein translocation following a secondary EPEC infection. Interestingly, we found that while EspZ of EHEC can block protein translocation from both EPEC and EHEC strains, EPEC EspZ cannot block translocation from EHEC. These studies show that EPEC and EHEC employ a novel infection strategy to regulate T3SS translocation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single poem included in this anthology which is currently a set text on the English 'A' level schools curriculum (England).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] Complex population structure has been described for the loggerhead sea turtle (Caretta caretta), revealing lower levels of population genetic structure in nuclear compared to mitochondrial DNA assays. This may result from mating during spatially overlapping breeding migrations, or male-biased dispersal as previously found for the green turtle (Chelonia mydas). To further investigate these multiple possibilities, we carried out a comparative analysis from twelve newly developed microsatellite loci and the mitochondrial DNA control region (~804 bp) in adult females of the Cape Verde Islands (n=158), and Georgia, USA (n=17).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the role of β-(1-3)-D-glucan on 99mTc labelled Escherichia coli translocation and cytokines secretion in rats submitted to small bowel ischemia/reperfusion injury. Methods: Five groups (n=10 each) of Wistar rats were subjected to control(C), sham(S), group IR subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R), and group I/R+glucan subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R) and injected with 2mg/Kg intramuscular. Translocation of labelled bacteria to mesenteric lymph nodes, liver, spleen, lung and serum was determined using radioactivity/count and colony forming units/g(CFU/g). Serum TNFα, IL-1β, IL-6, IL-10 were measured by ELISA. Results: CFU/g and radioactivity/count were higher in I/R than in I/R+glucan rats. In C, S and S+glucan groups, bacteria and radioactivity/count were rarely detected. The I/R+glucan rats had enhancement of IL-10 and suppressed production of serum TNFα, IL-1β and, IL-6, compared to I/R untreated animals. Conclusion: The β-(1-3)-D-glucan modulated the production of pro-inflammatory and anti-inflammatory cytokines during bowel ischemia/reperfusion, and attenuated translocation of labelled bacteria

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ischemia and reperfusion of the small intestine disrupts gut barrier, causes bacterial translocation and activates inflammatory responses. An experimental study was planned to evaluate if 99mTc labelled Escherichia coli translocates to mesenteric lymph nodes, liver, spleen, lung and serum of rats submitted to mesenteric ischemia/reperfusion. Additionally, it was observed if the time of reperfusion influences the level of translocation. METHODS: Forty male Wistar rats underwent 45 minutes of gut ischemia by occlusion of the superior mesenteric artery. The translocation of labelled bacteria to different organs and portal serum was determined in rats reperfused for 30 minutes, 24 hours, sham(S) and controls(C), using radioactivity count and colony forming units/g (CFU). RESULTS: All the organs from rats observed for 24 hours after reperfusion had higher levels of radioactivity and positive cultures (CFU) than did the organs of rats reperfused for 30 minutes, C and S, except in the spleen (p<0,01). CONCLUSION: The results of this study indicated that intestinal ischemia/reperfusion led to bacterial translocation, mostly after 24 hours of reperfusion

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate whether the alterations of the diverted colon segment mucosa, evidenced in fecal colitis, would be able to alter Bacterial Translocation (BT). Methods: Sixty-two Wistar male rats ranging from 220 to 320 grams of weight, were divided in two groups: A (Colostomy) and B (Control), with 31 animals each one. In group A, all animals underwent end colostomy, one stoma, in ascending colon; and in the 70th POD was injected in five rats, by rectal route – diverted segment - 2ml of a 0.9% saline solution in animals (A1 subgroup); in eight it was inoculated, by rectal route, 2ml of a solution containing Escherichia coli ATCC 25922 (American Type Culture Collection), in a concentration of 108 Colony Forming Unit for milliliters (CFU/ml) - A2 Subgroup; in ten animals the same solution of E. coli was inoculated, in a concentration of 1011 CFU/ml (A3 Subgroup); and in eight it was collected part of the mucus found in the diverted distal colonic segment for neutral sugars and total proteins dosage (A4 subgroup). The animals from the group B underwent the same procedures of group A, but with differences in the colostomy confection. In rats from subgroups A1, A2, A3, B1, B2, and B3 2ml of blood were aspirated from the heart, and fragments from mesenteric lymphatic nodule, liver, spleen, lung and kidney taken for microbiological analysis, after their death. This analysis consisted of evidencing the presence of E. coli ATCC 25922 CFU. Mann-Whitney and ANOVA Tests were applied as analytic techniques for association of variables. Results: The occurrence of BT was evidenced only in those animals in which inoculated concentration of E. coli ATCC 25922, reached levels of 1011CFU/ml, i.e. in Subgroups A3 and B3, although, being significantly greater (80%) in those animals without colostomy (subgroup B3) when compared to the ones with colostomy (20%) from the subgroup A3 (P <0.05). Lung, liver and mesenteric lymphatic nodules were the tissues with larger percentile of bacterial recovery, so much in subgroup A3, as in B3. Blood culture was considered positive in 60% of the animals from subgroup B3 and in 10% of those from subgroup A3 (p <0.05). There was greater concentration of neutral sugars, in subgroup A4 - mean 27.3mg/ml -, than in subgroup B4 - mean 8.4mg/ml - (P <0.05). Conclusion: The modifications in the architecture of intestinal mucosa in colitis following fecal diversion can cause alterations in the intestinal barrier, but it does not necessarily lead to an increased frequency of BT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the role of β-(1-3)-D-glucan on 99mTc labelled Escherichia coli translocation and cytokines secretion in rats submitted to small bowel ischemia/reperfusion injury. Methods: Five groups (n=10 each) of Wistar rats were subjected to control(C), sham(S), group IR subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R), and group I/R+glucan subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R) and injected with 2mg/Kg intramuscular. Translocation of labelled bacteria to mesenteric lymph nodes, liver, spleen, lung and serum was determined using radioactivity/count and colony forming units/g(CFU/g). Serum TNFα, IL-1β, IL-6, IL-10 were measured by ELISA. Results: CFU/g and radioactivity/count were higher in I/R than in I/R+glucan rats. In C, S and S+glucan groups, bacteria and radioactivity/count were rarely detected. The I/R+glucan rats had enhancement of IL-10 and suppressed production of serum TNFα, IL-1β and, IL-6, compared to I/R untreated animals. Conclusion: The β-(1-3)-D-glucan modulated the production of pro-inflammatory and anti-inflammatory cytokines during bowel ischemia/reperfusion, and attenuated translocation of labelled bacteria

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first topic area of this thesis involved studies on the accumulation and translocation of glucosinolates (GSs), bioactive secondary plant compounds, in broccoli plants. Changes in GS accumulation and gene expression levels in response to exogeneous methyl jasmonate (MeJA) treatment were analyzed in different tissue types at different developmental stages of broccoli. Greater accumulation of GSs with MeJA treatment was observed in apical leaves of broccoli seedlings and florets of plants at harvest maturity. Increases in indolyl GS in apical leaves of seedlings and florets were coupled with the up-regulation of indolyl GS biosynthesis genes. The accumulation of indolyl GSs appears to be modulated by MeJA treatment in an organ-specific manner for optimal distribution of defense substances in the plant. Metabolic profiling of hydrophilic metabolites using GC-MS demonstrated increased accumulation of various phenolics, ascorbates and amino acids in broccoli tissues after MeJA treatment. Distinct changes in carbohydrate levels observed between different tissues (vegetative leaves and floret tissues) of broccoli plants after treatment suggest that carbon metabolism is differentially modulated by MeJA treatment in different tissue types depending on sink-source relationships. Reduced levels of hexose sugars and tricarboxylic acid intermediates after MeJA treatment may reflect the increased requirement for carbon and energy needed to drive secondary product biosynthesis to accumulate metabolites for defense against insects and other herbivores. Substantial increases of indolyl and aromatic GSs after exogenous treatment with MeJA in stem and petioles of seedlings and the existence of intact indolyl-GS forms in phloem exudates suggest enhanced de novo synthesis in combination with active transport. Indoly GSs share structural similarities with the auxin, IAA, and may interact with components of the auxin transport system for intra- and extra-cellular transport or translocation. Application of the auxin efflux inhibitor, 1-naphthylphthalamic acid (NPA) reduced MeJA-mediated accumulation of indolyl GSs in broccoli florets and seedling tissues. NPA did not inhibit expression of indolyl GS biosynthesis genes shown to be upregulated by MeJA treatment or the accumulation of tryptophan, the amino acid precursor of indolyl GSs. Exogenous application of benzyl GS to Arabidopsis roots induced ectopic expression of the PIN1 protein associated with the auxin transport system similar to treatment with NPA, again suggesting GS interaction with the auxin efflux carrier system. The inhibitory effect of NPA on MeJA-mediated accumulation of GS may be due to competitive binding of NPA to auxin efflux carrier components and that GS transport is mediated by the auxin transport system. The inhibitory effect of NPA on indolyl and aromatic GS accumulation and the bioactivity of exogenous treatment of these GS compounds in PIN1 localization, Arabidopsis root growth, and gravitrophic response suggest that indolyl and aromatic GSs may be antagonistic to IAA transport and biosynthesis. Indolyl and aromatic GSs can also be potentially converted into IAA by hydrolysis. This intrinsic feature of GSs may be the part of a sophisticated regulatory process where the metabolic pathways in the plant shift from active growth to a reversible defense posture in response to biotic or abiotic stress. It seems likely that indolyl and aromatic GSs are important compounds that provide connections between jasmonate and auxin signaling. Further studies are required to reveal the regulatory mechanism for crosstalk between the two hormones. The third part of this research was to investigate effect of selenium fertilization and MeJA treatment on accumulation of GSs in broccoli florets. Increasing dietary intake of the element selenium (Se) has been shown to reduce the risk of cancer. Simultaneous enhancement of both Se and GS concentrations in broccoli floret tissue were conducted through the combined treatment of MeJA with Se fertilization. A low level of Se fertilization (concentration) with MeJA treatment displayed no significant changes in total aliphatic GS concentrations with 90% and 50% increases in indolyl and total GSs concentrations, respectively. This result suggests that Se- and GS-enriched broccoli with improved health-promoting properties can be generated by this combined treatment. The second topic of this thesis was conducted to provide basic information required to improve biomass quality and productivity and develop tools for gene transformation in Miscanthus x giganteus. The perennial rhizomatous grass, Miscanthus x giganteus is an ideal biomass crop due to its rapid vegetative growth and high biomass yield potential. As a naturally occurring sterile hybrid, M. x giganteus must be propagated vegetatively by mechanicalling divided rhizomes or from micropropagated plantlets. The effect of callus type, age and culture methods on regeneration competence was studied to improve regeneration efficiency and shorten the period of tissue culture in M. x giganteus propagation. Seven lignin biosynthesis genes and one putative flowering gene were isolated from M. x giganteus by PCR reactions using maize othologous sequences. Southern hybridization and nuclear DNA content analysis indicated that the genes isolated from M. x giganteus exist in the genome of other Miscanthus species as multiple copies. Analysis of lignin content and histological staining of lignin deposition indicated that higher lignin content is found in mature stem node tissues compared to young leaves and apical stem nodal tissues. Cell wall lignification is associated with increasing tissue maturity in Miscanthus species. RNAi and antisense constructs harboring sequences of these genes were developed to generate Miscanthus transgenic plants with suppressed of lignin biosynthesis and delayed flowering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the role of β-(1-3)-D-glucan on 99mTc labelled Escherichia coli translocation and cytokines secretion in rats submitted to small bowel ischemia/reperfusion injury. Methods: Five groups (n=10 each) of Wistar rats were subjected to control(C), sham(S), group IR subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R), and group I/R+glucan subjected to 45 min of bowel ischemia/60 min of reperfusion(I/R) and injected with 2mg/Kg intramuscular. Translocation of labelled bacteria to mesenteric lymph nodes, liver, spleen, lung and serum was determined using radioactivity/count and colony forming units/g(CFU/g). Serum TNFα, IL-1β, IL-6, IL-10 were measured by ELISA. Results: CFU/g and radioactivity/count were higher in I/R than in I/R+glucan rats. In C, S and S+glucan groups, bacteria and radioactivity/count were rarely detected. The I/R+glucan rats had enhancement of IL-10 and suppressed production of serum TNFα, IL-1β and, IL-6, compared to I/R untreated animals. Conclusion: The β-(1-3)-D-glucan modulated the production of pro-inflammatory and anti-inflammatory cytokines during bowel ischemia/reperfusion, and attenuated translocation of labelled bacteria

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ischemia and reperfusion of the small intestine disrupts gut barrier, causes bacterial translocation and activates inflammatory responses. An experimental study was planned to evaluate if 99mTc labelled Escherichia coli translocates to mesenteric lymph nodes, liver, spleen, lung and serum of rats submitted to mesenteric ischemia/reperfusion. Additionally, it was observed if the time of reperfusion influences the level of translocation. METHODS: Forty male Wistar rats underwent 45 minutes of gut ischemia by occlusion of the superior mesenteric artery. The translocation of labelled bacteria to different organs and portal serum was determined in rats reperfused for 30 minutes, 24 hours, sham(S) and controls(C), using radioactivity count and colony forming units/g (CFU). RESULTS: All the organs from rats observed for 24 hours after reperfusion had higher levels of radioactivity and positive cultures (CFU) than did the organs of rats reperfused for 30 minutes, C and S, except in the spleen (p<0,01). CONCLUSION: The results of this study indicated that intestinal ischemia/reperfusion led to bacterial translocation, mostly after 24 hours of reperfusion

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate whether the alterations of the diverted colon segment mucosa, evidenced in fecal colitis, would be able to alter Bacterial Translocation (BT). Methods: Sixty-two Wistar male rats ranging from 220 to 320 grams of weight, were divided in two groups: A (Colostomy) and B (Control), with 31 animals each one. In group A, all animals underwent end colostomy, one stoma, in ascending colon; and in the 70th POD was injected in five rats, by rectal route – diverted segment - 2ml of a 0.9% saline solution in animals (A1 subgroup); in eight it was inoculated, by rectal route, 2ml of a solution containing Escherichia coli ATCC 25922 (American Type Culture Collection), in a concentration of 108 Colony Forming Unit for milliliters (CFU/ml) - A2 Subgroup; in ten animals the same solution of E. coli was inoculated, in a concentration of 1011 CFU/ml (A3 Subgroup); and in eight it was collected part of the mucus found in the diverted distal colonic segment for neutral sugars and total proteins dosage (A4 subgroup). The animals from the group B underwent the same procedures of group A, but with differences in the colostomy confection. In rats from subgroups A1, A2, A3, B1, B2, and B3 2ml of blood were aspirated from the heart, and fragments from mesenteric lymphatic nodule, liver, spleen, lung and kidney taken for microbiological analysis, after their death. This analysis consisted of evidencing the presence of E. coli ATCC 25922 CFU. Mann-Whitney and ANOVA Tests were applied as analytic techniques for association of variables. Results: The occurrence of BT was evidenced only in those animals in which inoculated concentration of E. coli ATCC 25922, reached levels of 1011CFU/ml, i.e. in Subgroups A3 and B3, although, being significantly greater (80%) in those animals without colostomy (subgroup B3) when compared to the ones with colostomy (20%) from the subgroup A3 (P <0.05). Lung, liver and mesenteric lymphatic nodules were the tissues with larger percentile of bacterial recovery, so much in subgroup A3, as in B3. Blood culture was considered positive in 60% of the animals from subgroup B3 and in 10% of those from subgroup A3 (p <0.05). There was greater concentration of neutral sugars, in subgroup A4 - mean 27.3mg/ml -, than in subgroup B4 - mean 8.4mg/ml - (P <0.05). Conclusion: The modifications in the architecture of intestinal mucosa in colitis following fecal diversion can cause alterations in the intestinal barrier, but it does not necessarily lead to an increased frequency of BT