998 resultados para Genetic Alterations
Resumo:
Phenoxyalkanoic acid degradation is well studied in Beta- and Gammaproteobacteria, but the genetic background has not been elucidated so far in Alphaproteobacteria. We report the isolation of several genes involved in dichlor- and mecoprop degradation from the alphaproteobacterium Sphingomonas herbicidovorans MH and propose that the degradation proceeds analogously to that previously reported for 2,4-dichlorophenoxyacetic acid (2,4-D). Two genes for alpha-ketoglutarate-dependent dioxygenases, sdpA(MH) and rdpA(MH), were found, both of which were adjacent to sequences with potential insertion elements. Furthermore, a gene for a dichlorophenol hydroxylase (tfdB), a putative regulatory gene (cadR), two genes for dichlorocatechol 1,2-dioxygenases (dccA(I/II)), two for dienelactone hydrolases (dccD(I/II)), part of a gene for maleylacetate reductase (dccE), and one gene for a potential phenoxyalkanoic acid permease were isolated. In contrast to other 2,4-D degraders, the sdp, rdp, and dcc genes were scattered over the genome and their expression was not tightly regulated. No coherent pattern was derived on the possible origin of the sdp, rdp, and dcc pathway genes. rdpA(MH) was 99% identical to rdpA(MC1), an (R)-dichlorprop/alpha-ketoglutarate dioxygenase from Delftia acidovorans MC1, which is evidence for a recent gene exchange between Alpha- and Betaproteobacteria. Conversely, DccA(I) and DccA(II) did not group within the known chlorocatechol 1,2-dioxygenases, but formed a separate branch in clustering analysis. This suggests a different reservoir and reduced transfer for the genes of the modified ortho-cleavage pathway in Alphaproteobacteria compared with the ones in Beta- and Gammaproteobacteria.
Resumo:
Triatoma brasiliensis is composed of at least four geographic populations (brasiliensis, melanica, macromelasoma, and juazeiro) that have distinct chromatic, morphologic, biologic and ecologic patterns, and genetic composition. Reciprocal crosses between all pairwise combinations were carried out in order to evaluate the genetic and reproductive compatibility of these four populations. The F1 individuals developed normally and the resulting adults were crossed again to test the F2 and F3 viability. Genetic incompatibility was found between melanica and brasiliensis populations.
Resumo:
Thirty-two Trypanosoma cruzi strains, isolated from chronic chagasic patients in the northwest of the state of Paraná (Brazil), were analyzed using molecular, biochemical and biological characteristics. Genotypic analysis using randomly amplified polymorphic DNA and simple sequence repeat-anchored polymerase chain reaction amplified profiles showed a large, genetically well-correlated group that contained the majority of the strains and a divergent group that included the PR-150 strain. For glycoconjugate composition, the PR-150 strain was different from the other strains considering the absence or presence of specific bands in aqueous or detergent phases. This strain was also totally different from the others in one out of the six parameters related to in vitro and in vivo biological behavior. We highlight the fact that the PR-150 was totally resistant to benznidazole. For the other biological parameters this strain was not totally distinct from the others, but it showed a peculiar behavior.
Resumo:
Bipolar disorder has a genetic component, but the mode of inheritance remains unclear. A previous genome scan conducted in 70 European families led to detect eight regions linked to bipolar disease. Here, we present an investigation of whether the phenotypic heterogeneity of the disorder corresponds to genetic heterogeneity in these regions using additional markers and an extended sample of families. The MLS statistic was used for linkage analyses. The predivided sample test and the maximum likelihood binomial methods were used to test genetic homogeneity between early-onset bipolar type I (cut-off of 22 years) and other types of the disorder (later onset of bipolar type I and early-onset bipolar type II), using a total of 138 independent bipolar-affected sib-pairs. Analysis of the extended sample of families supports linkage in four regions (2q14, 3p14, 16p23, and 20p12) of the eight regions of linkage suggested by our previous genome scan. Heterogeneity testing revealed genetic heterogeneity between early and late-onset bipolar type I in the 2q14 region (P = 0.0001). Only the early form of the bipolar disorder but not the late form appeared to be linked to this region. This region may therefore include a genetic factor either specifically involved in the early-onset bipolar type I or only influencing the age at onset (AAO). Our findings illustrate that stratification according to AAO may be valuable for the identification of genetic vulnerability polymorphisms.
Resumo:
To develop a comprehensive overview of copy number aberrations (CNAs) in stage-II/III colorectal cancer (CRC), we characterized 302 tumors from the PETACC-3 clinical trial. Microsatellite-stable (MSS) samples (n = 269) had 66 minimal common CNA regions, with frequent gains on 20 q (72.5%), 7 (41.8%), 8 q (33.1%) and 13 q (51.0%) and losses on 18 (58.6%), 4 q (26%) and 21 q (21.6%). MSS tumors have significantly more CNAs than microsatellite-instable (MSI) tumors: within the MSI tumors a novel deletion of the tumor suppressor WWOX at 16 q23.1 was identified (p<0.01). Focal aberrations identified by the GISTIC method confirmed amplifications of oncogenes including EGFR, ERBB2, CCND1, MET, and MYC, and deletions of tumor suppressors including TP53, APC, and SMAD4, and gene expression was highly concordant with copy number aberration for these genes. Novel amplicons included putative oncogenes such as WNK1 and HNF4A, which also showed high concordance between copy number and expression. Survival analysis associated a specific patient segment featured by chromosome 20 q gains to an improved overall survival, which might be due to higher expression of genes such as EEF1B2 and PTK6. The CNA clustering also grouped tumors characterized by a poor prognosis BRAF-mutant-like signature derived from mRNA data from this cohort. We further revealed non-random correlation between CNAs among unlinked loci, including positive correlation between 20 q gain and 8 q gain, and 20 q gain and chromosome 18 loss, consistent with co-selection of these CNAs. These results reinforce the non-random nature of somatic CNAs in stage-II/III CRC and highlight loci and genes that may play an important role in driving the development and outcome of this disease.
Resumo:
Many cell surface glycoproteins are anchored in the lipid bilayer by a glycosylphosphatidyl-inositol (GPI) structure. Recently, a number of cell lines which are deficient in the biosynthesis and/or addition of this anchor have been described. In this report, we summarize the current knowledge on these lines and discuss their potential use to isolate the genes involved in the GPI anchor biosynthetic pathway with a specific emphasis on L cell fibroblasts.
Resumo:
BACKGROUND: Vitamin D insufficiency has been associated with the occurrence of various types of cancer, but causal relationships remain elusive. We therefore aimed to determine the relationship between genetic determinants of vitamin D serum levels and the risk of developing hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC). METHODOLOGYPRINCIPAL FINDINGS: Associations between CYP2R1, GC, and DHCR7 genotypes that are determinants of reduced 25-hydroxyvitamin D (25[OH]D3) serum levels and the risk of HCV-related HCC development were investigated for 1279 chronic hepatitis C patients with HCC and 4325 without HCC, respectively. The well-known associations between CYP2R1 (rs1993116, rs10741657), GC (rs2282679), and DHCR7 (rs7944926, rs12785878) genotypes and 25(OH)D3 serum levels were also apparent in patients with chronic hepatitis C. The same genotypes of these single nucleotide polymorphisms (SNPs) that are associated with reduced 25(OH)D3 serum levels were found to be associated with HCV-related HCC (P = 0.07 [OR = 1.13, 95% CI = 0.99-1.28] for CYP2R1, P = 0.007 [OR = 1.56, 95% CI = 1.12-2.15] for GC, P = 0.003 [OR = 1.42, 95% CI = 1.13-1.78] for DHCR7; ORs for risk genotypes). In contrast, no association between these genetic variations and liver fibrosis progression rate (P>0.2 for each SNP) or outcome of standard therapy with pegylated interferon-α and ribavirin (P>0.2 for each SNP) was observed, suggesting a specific influence of the genetic determinants of 25(OH)D3 serum levels on hepatocarcinogenesis. CONCLUSIONSSIGNIFICANCE: Our data suggest a relatively weak but functionally relevant role for vitamin D in the prevention of HCV-related hepatocarcinogenesis.
Resumo:
Division of labour is one of the most prominent features of social insects. The efficient allocation of individuals to different tasks requires dynamic adjustment in response to environmental perturbations. Theoretical models suggest that the colony-level flexibility in responding to external changes and internal perturbation may depend on the within-colony genetic diversity, which is affected by the number of breeding individuals. However, these models have not considered the genetic architecture underlying the propensity of workers to perform the various tasks. Here, we investigated how both within-colony genetic variability (stemming from variation in the number of matings by queens) and the number of genes influencing the stimulus (threshold) for a given task at which workers begin to perform that task jointly influence task allocation efficiency. We used a numerical agent-based model to investigate the situation where workers had to perform either a regulatory task or a foraging task. One hundred generations of artificial selection in populations consisting of 500 colonies revealed that an increased number of matings always improved colony performance, whatever the number of loci encoding the thresholds of the regulatory and foraging tasks. However, the beneficial effect of additional matings was particularly important when the genetic architecture of queens comprised one or a few genes for the foraging task's threshold. By contrast, a higher number of genes encoding the foraging task reduced colony performance with the detrimental effect being stronger when queens had mated with several males. Finally, the number of genes encoding the threshold for the regulatory task only had a minor effect on colony performance. Overall, our numerical experiments support the importance of mating frequency on efficiency of division of labour and also reveal complex interactions between the number of matings and genetic architecture.
Resumo:
Genetic diversity is the amount of variation observed between DNA sequences from distinct individuals of a given species. This pivotal concept of population genetics has implications for species health, domestication, management and conservation. Levels of genetic diversity seem to vary greatly in natural populations and species, but the determinants of this variation, and particularly the relative influences of species biology and ecology versus population history, are still largely mysterious. Here we show that the diversity of a species is predictable, and is determined in the first place by its ecological strategy. We investigated the genome-wide diversity of 76 non-model animal species by sequencing the transcriptome of two to ten individuals in each species. The distribution of genetic diversity between species revealed no detectable influence of geographic range or invasive status but was accurately predicted by key species traits related to parental investment: long-lived or low-fecundity species with brooding ability were genetically less diverse than short-lived or highly fecund ones. Our analysis demonstrates the influence of long-term life-history strategies on species response to short-term environmental perturbations, a result with immediate implications for conservation policies.
Resumo:
Chagas disease, caused by the protozoan Trypanosoma cruzi, has a variable clinical course, ranging from symptomless infection to severe chronic disease with cardiovascular or gastrointestinal involvement or, occasionally, overwhelming acute episodes. The factors influencing this clinical variability have not been elucidated, but it is likely that the genetic variability of both the host and the parasite are of importance. In this work we review the the genetic structure of T. cruzi populations and analyze the importance of genetic variation of the parasite in the pathogenesis of the disease under the light of the histotropic-clonal model.
Resumo:
Members of the Ly-49 gene family code for class I MHC-specific receptors that regulate NK cell function. Due to a combinatorial distribution of Ly-49 receptors, NK cells display considerable clonal heterogeneity. The acquisition of one Ly-49 receptor, Ly-49A is strictly dependent on the transcriptional trans-acting factor T cell-specific factor-1 (TCF-1). Indeed, TCF-1 binds to two sites in the Ly-49a promoter and regulates its activity, suggesting that the Ly-49a gene is a direct TCF-1 target. TCF-1 deficiency resulted in the altered usage of additional Ly-49 receptors. We show in this study, using TCF-1 beta(2)-microglobulin double-deficient mice, that these repertoire alterations are not due to Ly-49/MHC class I interactions. Our findings rather suggest a TCF-1-dependent, cell autonomous effect on the acquisition of multiple Ly-49 receptors. Besides reduced receptor usage (Ly-49A and D), we also observed no effect (Ly-49C) and significantly expanded (Ly-49G and I) receptor usage in the absence of TCF-1. These effects did not in all cases correlate with the presence of TCF binding sites in the respective proximal promoter. Therefore, besides TCF-1 binding to the proximal promoter, Ly-49 acquisition may also be regulated by TCF-1 binding to more distant cis-acting elements and/or by regulating the expression of additional trans-acting factors. Consistent with the observed differential, positive or negative role of TCF-1 for Ly-49 receptor acquisition, reporter gene assays revealed the presence of an inducing as well as a repressing TCF site in certain proximal Ly-49 promoters. These findings reveal an important role of TCF-1 for the formation of the NK cell receptor repertoire.
Resumo:
The patterns of genetic variation of samples of Candida spp. isolated from patients infected with human immunodeficiency virus in Vitória, state of Espírito Santo, Brazil, were examined. Thirty-seven strains were isolated from different anatomical sites obtained from different infection episodes of 11 patients infected with the human immunodeficiency virus (HIV). These samples were subjected to randomly amplified polymorphic DNA (RAPD) analysis using 9 different primers. Reproducible and complex DNA banding patterns were obtained. The experiments indicated evidence of dynamic process of yeast colonization in HIV-infected patients, and also that certain primers are efficient in the identification of species of the Candida genus. Thus, we conclude that RAPD analysis may be useful in providing genotypic characters for Candida species typing in epidemiological investigations, and also for the rapid identification of pathogenic fungi.
Specific mutations in the estrogen receptor change the properties of antiestrogens to full agonists.
Resumo:
The estrogen receptor (ER) stimulates transcription of target genes by means of its two transcriptional activation domains, AF-1 in the N-terminal part of the receptor and AF-2 in its ligand-binding domain. AF-2 activity is dependent upon a putative amphipathic alpha-helix between residues 538 and 552 in the mouse ER. Point mutagenesis of conserved hydrophobic residues within this region reduces estrogen-dependent transcriptional activation without affecting hormone and DNA binding significantly. Here we show that these mutations dramatically alter the pharmacology of estrogen antagonists. Both tamoxifen and ICI 164,384 behave as strong agonists in HeLa cells expressing the ER mutants. In contrast to the wild-type ER, the mutant receptors maintain nuclear localization and DNA-binding activity after ICI 164,384 treatment. Structural alterations in AF-2 caused by gene mutations such as those described herein or by estrogen-independent signaling pathways may account for the insensitivity of some breast cancers to tamoxifen treatment.
Resumo:
CONTEXT: Several genetic risk scores to identify asymptomatic subjects at high risk of developing type 2 diabetes mellitus (T2DM) have been proposed, but it is unclear whether they add extra information to risk scores based on clinical and biological data. OBJECTIVE: The objective of the study was to assess the extra clinical value of genetic risk scores in predicting the occurrence of T2DM. DESIGN: This was a prospective study, with a mean follow-up time of 5 yr. SETTING AND SUBJECTS: The study included 2824 nondiabetic participants (1548 women, 52 ± 10 yr). MAIN OUTCOME MEASURE: Six genetic risk scores for T2DM were tested. Four were derived from the literature and two were created combining all (n = 24) or shared (n = 9) single-nucleotide polymorphisms of the previous scores. A previously validated clinic + biological risk score for T2DM was used as reference. RESULTS: Two hundred seven participants (7.3%) developed T2DM during follow-up. On bivariate analysis, no differences were found for all but one genetic score between nondiabetic and diabetic participants. After adjusting for the validated clinic + biological risk score, none of the genetic scores improved discrimination, as assessed by changes in the area under the receiver-operating characteristic curve (range -0.4 to -0.1%), sensitivity (-2.9 to -1.0%), specificity (0.0-0.1%), and positive (-6.6 to +0.7%) and negative (-0.2 to 0.0%) predictive values. Similarly, no improvement in T2DM risk prediction was found: net reclassification index ranging from -5.3 to -1.6% and nonsignificant (P ≥ 0.49) integrated discrimination improvement. CONCLUSIONS: In this study, adding genetic information to a previously validated clinic + biological score does not seem to improve the prediction of T2DM.
Resumo:
Natural selection is typically exerted at some specific life stages. If natural selection takes place before a trait can be measured, using conventional models can cause wrong inference about population parameters. When the missing data process relates to the trait of interest, a valid inference requires explicit modeling of the missing process. We propose a joint modeling approach, a shared parameter model, to account for nonrandom missing data. It consists of an animal model for the phenotypic data and a logistic model for the missing process, linked by the additive genetic effects. A Bayesian approach is taken and inference is made using integrated nested Laplace approximations. From a simulation study we find that wrongly assuming that missing data are missing at random can result in severely biased estimates of additive genetic variance. Using real data from a wild population of Swiss barn owls Tyto alba, our model indicates that the missing individuals would display large black spots; and we conclude that genes affecting this trait are already under selection before it is expressed. Our model is a tool to correctly estimate the magnitude of both natural selection and additive genetic variance.