880 resultados para Generalized Symmetrical Components
Resumo:
We show that the wavefunctions 〈pq; λ|n〈, of the harmonic oscillator in the squeezed state representation, have the generalized Hermite polynomials as their natural orthogonal polynomials. These wavefunctions lead to generalized Poisson Distribution Pn(pq;λ), which satisfy an interesting pseudo-diffusion equation: ∂Pnp,q;λ) ∂λ= 1 4 [ ∂2 ∂p2-( 1 λ2) ∂2 ∂q2]P2(p,q;λ), in which the squeeze parameter λ plays the role of time. Th entropies Sn(λ) have minima at the unsqueezed states (λ=1), which means that squeezing or stretching decreases the correlation between momentum p and position q. © 1992.
Resumo:
Invariance under non-linear Ŵ∞ algebra is shown for the two-boson Liouville type of model and its algebraic generalizations, the extended conformal Toda models. The realization of the corresponding generators in terms of two boson currents within KP hierarchy is presented.
Resumo:
We quantize a generalized version of the Schwinger model, where the two chiral sectors couples with different strengths to the U(1) gauge field. Starting from a theory which includes a generalized Wess-Zumino term, we obtain the equal time commutation relation for physical fields, both the singular and non-singular cases are considered. The photon propagators are also computed in their gauge dependent and invariant versions. © 1995 Springer-Verlag.
Resumo:
Circulating immune complexes (CIC) from 15 paracoccidioidomycosis (PCM) patient sera and from 20 healthy control sera were analysed. After CIC precipitation, solubilization and acid treatment, only a little reactivity to P. brasiliensis antigens was found in the free antibodies from PCM-CIC. This result has suggested that there were antibodies with a high affinity bound to fungus components. Dissociated CIC were fractionated in a column of Sephacryl S300 and the fractions that probably contained antigens were pooled and applied to an affinity column, prepared with mouse anti-gp43 monoclonal antibody. Using ECL-Western blotting assay two polypeptide with apparent mass of 43 and 62 kDa were found.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Recently, Basseto and Griguolo1 did a perturbative quantization of what they called a generalized chiral Schwinger model. As a consequence of the kind of quantization adopted, some gauge-dependent masses raised in the model. On the other hand, we discussed the possibility of introducing a generalized Wess-Zumino term,2 where such gauge-dependent masses did appear. Here we intend to show that one can construct a non-anomalous version of a model which include that, presented by Basseto and Griguolo as a particular case, by adding to it a generalized Wess-Zumino term, as proposed in Ref. 2. So we conclude that it is possible to construct a gauge-invariant extension of the model quoted in Ref. 1, and this can be done through a Wess-Zumino term of the type proposed in Ref. 2.
Resumo:
We have compared the recently introduced generalized simulated annealing (GSA) with conventional simulated annealing (CSA). GSA was tested as a tool to obtain the ground-state geometry of molecules. We have used selected silicon clusters (Sin, n=4-7,10) as test cases. Total energies were calculated through tight-binding molecular dynamics. We have found that the replacement of Boltzmann statistics (CSA) by Tsallis's statistics (GSA) has the potential to speed up optimizations with no loss of accuracy. Next, we applied the GSA method to study the ground-state geometry of a 20-atom silicon cluster. We found an original geometry, apparently lower in energy than those previously described in the literature.
Resumo:
In the present paper, we discuss a generalized theory of electrical characteristics for amorphous semiconductor (or insulator) Schottky barriers, considering: (i) surface states, (ii) doping impurity states at a single energy level and (iii) energetically distributed bulk impurity states. We also consider a thin oxide layer (≈10 Å) between metal and semiconductor. We develop current versus applied potential characteristics considering the variation of the Fermi level very close to contact inside the semiconductor and decrease in barrier height due to the image force effect as well as potential fall on the oxide layer. Finally, we discuss the importance of each parameter, i.e. surface states, distributed impurity states, doping impurity states, thickness of oxide layer etc. on the log I versus applied potential characteristics. The present theory is also applicable for intimate contact, i.e. metal-semiconductor contact, crystalline material structures or for Schottky barriers in insulators or polymers.
Resumo:
This paper enhances some concepts of the Instantaneous Complex Power Theory by analyzing the analytical expressions for voltages, currents and powers developed on a symmetrical RL three-phase system, during the transient caused by a sinusoidal voltage excitation. The powers delivered to an ideal inductor will be interpreted, allowing a deep insight in the power phenomenon by analyzing the voltages in each element of the circuit. The results can be applied to the understanding of non-linear systems subject to sinusoidal voltage excitation and distorted currents.