954 resultados para Generalised Linear Modelling
Resumo:
This paper describes the development and applications of a super-resolution method, known as Super-Resolution Variable-Pixel Linear Reconstruction. The algorithm works combining different lower resolution images in order to obtain, as a result, a higher resolution image. We show that it can make significant spatial resolution improvements to satellite images of the Earth¿s surface allowing recognition of objects with size approaching the limiting spatial resolution of the lower resolution images. The algorithm is based on the Variable-Pixel Linear Reconstruction algorithm developed by Fruchter and Hook, a well-known method in astronomy but never used for Earth remote sensing purposes. The algorithm preserves photometry, can weight input images according to the statistical significance of each pixel, and removes the effect of geometric distortion on both image shape and photometry. In this paper, we describe its development for remote sensing purposes, show the usefulness of the algorithm working with images as different to the astronomical images as the remote sensing ones, and show applications to: 1) a set of simulated multispectral images obtained from a real Quickbird image; and 2) a set of multispectral real Landsat Enhanced Thematic Mapper Plus (ETM+) images. These examples show that the algorithm provides a substantial improvement in limiting spatial resolution for both simulated and real data sets without significantly altering the multispectral content of the input low-resolution images, without amplifying the noise, and with very few artifacts.
Resumo:
High N concentrations in biosolids are one of the strongest reasons for their agricultural use. However, it is essential to understand the fate of N in soils treated with biosolids for both plant nutrition and managing the environmental risk of NO3--N leaching. This work aimed at evaluating the risk of NO3--N leaching from a Spodosol and an Oxisol, each one treated with 0.5-8.0 dry Mg ha-1 of fresh tertiary sewage sludge, composted biosolids, limed biosolids, heat-dried biosolids and solar-irradiated biosolids. Results indicated that under similar application rates NO3--N accumulated up to three times more in the 20 cm topsoil of the Oxisol than the Spodosol. However, a higher water content held at field capacity in the Oxisol compensated for the greater nitrate concentrations. A 20 % NO3--N loss from the root zone in the amended Oxisol could be expected. Depending on the biosolids type, 42 to 76 % of the NO3--N accumulated in the Spodosol could be expected to leach down from the amended 20 cm topsoil. NO3--N expected to leach from the Spodosol ranged from 0.8 (composted sludge) to 3.5 times (limed sludge) the amounts leaching from the Oxisol treated alike. Nevertheless, the risk of NO3--N groundwater contamination as a result of a single biosolids land application at 0.5-8.0 dry Mg ha-1 could be considered low.
Resumo:
Prediction of species' distributions is central to diverse applications in ecology, evolution and conservation science. There is increasing electronic access to vast sets of occurrence records in museums and herbaria, yet little effective guidance on how best to use this information in the context of numerous approaches for modelling distributions. To meet this need, we compared 16 modelling methods over 226 species from 6 regions of the world, creating the most comprehensive set of model comparisons to date. We used presence-only data to fit models, and independent presence-absence data to evaluate the predictions. Along with well-established modelling methods such as generalised additive models and GARP and BIOCLIM, we explored methods that either have been developed recently or have rarely been applied to modelling species' distributions. These include machine-learning methods and community models, both of which have features that may make them particularly well suited to noisy or sparse information, as is typical of species' occurrence data. Presence-only data were effective for modelling species' distributions for many species and regions. The novel methods consistently outperformed more established methods. The results of our analysis are promising for the use of data from museums and herbaria, especially as methods suited to the noise inherent in such data improve.
Resumo:
Em relação aos sistemas de manejo adotados pelo homem, a porosidade total e a densidade do solo são atributos ativamente alterados, refletindo decisivamente sobre a produtividade vegetal agrícola. No ano agrícola de 2005, na Fazenda Bonança, no município de Pereira Barreto, Estado de São Paulo, Brasil, foram analisadas a produtividade de forragem do milho outonal (MSF) no sistema plantio direto irrigado, a porosidade total (PT) e a densidade do solo (DS) em profundidade, em um Latossolo Vermelho distrófico. O objetivo foi estudar a variabilidade e as correlações lineares e espaciais entre os atributos da planta e do solo, visando selecionar um indicador da qualidade física do solo de boa representatividade para produtividade da forragem. Foi instalada a malha geoestatística, para coleta de dados do solo e planta, contendo 125 pontos amostrais, numa área de 2.500 m². Os atributos estudados, além de não terem variado aleatoriamente, apresentaram variabilidade dos dados entre média e baixa e seguiram padrões espaciais bem definidos, com alcance entre 6,8 e 23,7 m. Por sua vez, a correlação linear entre o atributo da planta e os do solo, em razão do elevado número de observações, foi baixa. As observações de melhor correlação com a MSF foram a DS1 e a PT1. Entretanto, do ponto de vista espacial, houve excelente correlação inversa entre a MSF e a DS1, assim como entre a DS1 e a PT1. Nos sítios onde a DS1 aumentou (1,45-1,64 kg dm-3) a MSF variou entre 11.653 e 14.552 kg ha-1; já naqueles onde diminuiu (1,35-1,45 kg dm-3) a MSF, ficou entre 14.552 e 17.450 kg ha-1. Portanto, a densidade global, avaliada na camada de 0-0,10 m (DS1), apresentou-se como satisfatório indicador da qualidade física do solo de Pereira Barreto (SP), quando destinado à produtividade de forragem do milho outonal.
Resumo:
A porosidade do solo exerce grande influência sobre o crescimento e desenvolvimento vegetal, uma vez que o crescimento das raízes, tal como a produtividade das culturas, é limitado pela profundidade que atingem. Portanto, o objetivo deste trabalho foi estudar a variabilidade espacial e as correlações lineares entre a produtividade de feijão e a porosidade do solo. No ano de 2004/2005, no município de Selvíria, MS, foram analisadas a produtividade de grãos de feijão (PG), cultivar IAC Carioca, irrigado, a macroporosidade (MA), a microporosidade (MI) e a porosidade total (PT) do solo em quatro profundidades: 1 (0,0-0,10); 2(0,10-0,20); 3(0,20-0,30) e 4(0,30-0,40 m), num Latossolo Vermelho distroférrico. As amostras de solo e planta foram coletadas em uma malha geoestatística com 75 pontos espaçados de 10 x 10 m, mais 60 pontos de quatro malhas de refinamento numa área de 50 x 150 m. Os atributos estudados, além de não terem variado aleatoriamente, apresentaram média e baixa variabilidades. Seguiram padrões espaciais bem definidos, com alcances entre 11,70 e 104,40 m. A correlação linear entre o atributo da planta e os do solo, em função do elevado número de observações, foi baixa. As de melhor correlação linear com a PG foram a MA1, MI1 e a PT3. Entretanto, do ponto de vista espacial, houve excelente correlação inversa entre a PG e a #PT2. Assim, nos sítios onde a #PT2 diminuiu (0,030-0,045 m³ m-3 ), a PG variou entre 2.173 e 3.529 kg ha-1. Já naqueles onde aumentou (0,045-0,076 m³ m-3 ), a PG ficou entre 1.630-2.173 kg ha-1. Assim, a porosidade total do solo, quando avaliada na camada de 0,10-0,20 m (#PT2), indicou a importância do contato raiz/solo e, de modo inverso, apresentou satisfatório indicador da qualidade física do solo estudado, quando destinado à produtividade de grãos de feijão irrigado.
Resumo:
A resistência do solo ao penetrômetro exerce grande influência sobre o crescimento e desenvolvimento vegetal, uma vez que o crescimento das raízes, assim como o rendimento das culturas, varia de forma inversamente proporcional ao seu valor. Dessa forma, a análise da variabilidade espacial da resistência do solo ao penetrômetro e da produtividade, por meio da geoestatística, pode indicar alternativas de manejo para reduzir os efeitos da variabilidade do solo sobre a produtividade e também melhorar a estimativa de respostas das culturas sob determinadas práticas de manejo. Diante do exposto, o objetivo deste trabalho foi relacionar e caracterizar a variabilidade espacial da resistência do solo ao penetrômetro (RP) e a produtividade do feijoeiro irrigado em sistema de semeadura direta, em duas safras consecutivas. O experimento foi realizado em Latossolo Vermelho distroférrico típico, no campo experimental da Faculdade de Engenharia Agrícola da Unicamp, no município de Campinas-SP, cujas coordenadas geográficas são: 22 ° 48 ' 57 " de latitude sul, 47 ° 03 ' 33 " de longitude oeste e altitude média de 640 m. As avaliações foram realizadas em uma malha regular de amostragem de 3 x 3 m, totalizando 60 pontos amostrais por parcela. A análise da dependência espacial foi avaliada pela geoestatística, e os parâmetros dos semivariogramas utilizados para construir mapas de isolinhas, por meio do interpolador de krigagem do programa Surfer 8.0. A regressão linear simples entre mapas (pixel-a-pixel) mostrou correlação negativa entre os valores de RP e a produtividade; no entanto, a produtividade do feijoeiro irrigado apresentou baixa correlação com a resistência do solo ao penetrômetro em sistema semeadura direta nas duas safras.
Resumo:
Linear and nonlinear optical properties of silicon suboxide SiOx films deposited by plasma-enhanced chemical-vapor deposition have been studied for different Si excesses up to 24¿at.¿%. The layers have been fully characterized with respect to their atomic composition and the structure of the Si precipitates. Linear refractive index and extinction coefficient have been determined in the whole visible range, enabling to estimate the optical bandgap as a function of the Si nanocrystal size. Nonlinear optical properties have been evaluated by the z-scan technique for two different excitations: at 0.80¿eV in the nanosecond regime and at 1.50¿eV in the femtosecond regime. Under nanosecond excitation conditions, the nonlinear process is ruled by thermal effects, showing large values of both nonlinear refractive index (n2 ~ ¿10¿8¿cm2/W) and nonlinear absorption coefficient (ß ~ 10¿6¿cm/W). Under femtosecond excitation conditions, a smaller nonlinear refractive index is found (n2 ~ 10¿12¿cm2/W), typical of nonlinearities arising from electronic response. The contribution per nanocrystal to the electronic third-order nonlinear susceptibility increases as the size of the Si nanoparticles is reduced, due to the appearance of electronic transitions between discrete levels induced by quantum confinement.
Resumo:
We report on direct experimental evidence of shot noise in a linear macroscopic resistor. The origin of the shot noise comes from the fluctuation of the total number of charge carriers inside the resistor associated with their diffusive motion under the condition that the dielectric relaxation time becomes longer than the dynamic transit time. The present results show that neither potential barriers nor the absence of inelastic scattering are necessary to observe shot noise in electronic devices.
Resumo:
This research provides a description of the process followed in order to assemble a "Social Accounting Matrix" for Spain corresponding to the year 2000 (SAMSP00). As argued in the paper, this process attempts to reconcile ESA95 conventions with requirements of applied general equilibrium modelling. Particularly, problems related to the level of aggregation of net taxation data, and to the valuation system used for expressing the monetary value of input-output transactions have deserved special attention. Since the adoption of ESA95 conventions, input-output transactions have been preferably valued at basic prices, which impose additional difficulties on modellers interested in computing applied general equilibrium models. This paper addresses these difficulties by developing a procedure that allows SAM-builders to change the valuation system of input-output transactions conveniently. In addition, this procedure produces new data related to net taxation information.
Resumo:
This contribution builds upon a former paper by the authors (Lipps and Betz 2004), in which a stochastic population projection for East- and West Germany is performed. Aim was to forecast relevant population parameters and their distribution in a consistent way. We now present some modifications, which have been modelled since. First, population parameters for the entire German population are modelled. In order to overcome the modelling problem of the structural break in the East during reunification, we show that the adaptation process of the relevant figures by the East can be considered to be completed by now. As a consequence, German parameters can be modelled just by using the West German historic patterns, with the start-off population of entire Germany. Second, a new model to simulate age specific fertility rates is presented, based on a quadratic spline approach. This offers a higher flexibility to model various age specific fertility curves. The simulation results are compared with the scenario based official forecasts for Germany in 2050. Exemplary for some population parameters (e.g. dependency ratio), it can be shown that the range spanned by the medium and extreme variants correspond to the s-intervals in the stochastic framework. It seems therefore more appropriate to treat this range as a s-interval covering about two thirds of the true distribution.
Resumo:
[cat] En aquest treball extenem les reformes lineals introduïdes per Pfähler (1984) al cas d’impostos duals. Estudiem l’efecte relatiu que els retalls lineals duals d’un impost dual tenen sobre la distribució de la desigualtat -es pot fer un estudi simètric per al cas d’augments d’impostos-. Tambe introduïm mesures del grau de progressivitat d’impostos duals i mostrem que estan connectades amb el criteri de dominació de Lorenz. Addicionalment, estudiem l’elasticitat de la càrrega fiscal de cadascuna de les reformes proposades. Finalment, gràcies a un model de microsimulació i una gran base de dades que conté informació sobre l’IRPF espanyol de l’any 2004, 1) comparem l’efecte que diferents reformes tindrien sobre l’impost dual espanyol i 2) estudiem quina redistribució de la riquesa va suposar la reforma dual de l’IRPF (Llei ’35/2006’) respecte l’anterior impost.
Resumo:
We propose an iterative procedure to minimize the sum of squares function which avoids the nonlinear nature of estimating the first order moving average parameter and provides a closed form of the estimator. The asymptotic properties of the method are discussed and the consistency of the linear least squares estimator is proved for the invertible case. We perform various Monte Carlo experiments in order to compare the sample properties of the linear least squares estimator with its nonlinear counterpart for the conditional and unconditional cases. Some examples are also discussed
Resumo:
The research considers the problem of spatial data classification using machine learning algorithms: probabilistic neural networks (PNN) and support vector machines (SVM). As a benchmark model simple k-nearest neighbor algorithm is considered. PNN is a neural network reformulation of well known nonparametric principles of probability density modeling using kernel density estimator and Bayesian optimal or maximum a posteriori decision rules. PNN is well suited to problems where not only predictions but also quantification of accuracy and integration of prior information are necessary. An important property of PNN is that they can be easily used in decision support systems dealing with problems of automatic classification. Support vector machine is an implementation of the principles of statistical learning theory for the classification tasks. Recently they were successfully applied for different environmental topics: classification of soil types and hydro-geological units, optimization of monitoring networks, susceptibility mapping of natural hazards. In the present paper both simulated and real data case studies (low and high dimensional) are considered. The main attention is paid to the detection and learning of spatial patterns by the algorithms applied.
Resumo:
In this paper we describe the results of a simulation study performed to elucidate the robustness of the Lindstrom and Bates (1990) approximation method under non-normality of the residuals, under different situations. Concerning the fixed effects, the observed coverage probabilities and the true bias and mean square error values, show that some aspects of this inferential approach are not completely reliable. When the true distribution of the residuals is asymmetrical, the true coverage is markedly lower than the nominal one. The best results are obtained for the skew normal distribution, and not for the normal distribution. On the other hand, the results are partially reversed concerning the random effects. Soybean genotypes data are used to illustrate the methods and to motivate the simulation scenarios