958 resultados para Galaxies : Dwarf


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a catalogue of galaxies in Abell 3653 from observations made with the 2-degree field (2dF) spectrograph at the Anglo-Australian Telescope. Of the 391 objects observed, we find 111 are bona fide members of Abell 3653. We show that the cluster has a velocity of cz= 32 214 +/- 83 km s(-1) (z= 0.10 738 +/- 0.00 027), with a velocity dispersion typical of rich, massive clusters of sigma(cz)= 880(-54)(+66). We find that the cD galaxy has a peculiar velocity of 683 +/- 96 km s(-1) in the cluster rest frame - some 7 sigma away from the mean cluster velocity, making it one of the largest and most significant peculiar velocities found for a cD galaxy to date. We investigate the cluster for signs of substructure, but do not find any significant groupings on any length scale. We consider the implications of our findings on cD formation theories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present the analysis of the spectroscopic and photometric catalogues of 11 X-ray luminous clusters at 0.07 < z < 0.16 from the Las Campanas/Anglo-Australian Telescope Rich Cluster Survey. Our spectroscopic data set consists of over 1600 galaxy cluster members, of which two-thirds are outside r(200). These spectra allow us to assign cluster membership using a detailed mass model and expand on our previous work on the cluster colour-magnitude relation ( CMR) where membership was inferred statistically. We confirm that the modal colours of galaxies on the CMR become progressively bluer with increasing radius d( B - R)/dr(p) = - 0.011 +/- 0.003 and with decreasing local galaxy density d( B - R)/dlog ( Sigma)= - 0.062 +/- 0.009. Interpreted as an age effect, we hypothesize that these trends in galaxy colour should be reflected in mean H delta equivalent width. We confirm that passive galaxies in the cluster increase in Hd line strength as dH delta/dr(p) = 0.35 +/- 0.06. Therefore, those galaxies in the cluster outskirts may have younger luminosity-weighted stellar populations; up to 3 Gyr younger than those in the cluster centre assuming d( B - R)/dt = 0.03 mag per Gyr. A variation of star formation rate, as measured by [ O II]lambda 3727 angstrom, with increasing local density of the environment is discernible and is shown to be in broad agreement with previous studies from the 2dF Galaxy Redshift Survey and the Sloan Digital Sky Survey. We divide our spectra into a variety of types based upon the MORPHs classification scheme. We find that clusters at z similar to 0.1 are less active than their higher-redshift analogues: about 60 per cent of the cluster galaxy population is non-star forming, with a further 20 per cent in the post-starburst class and 20 per cent in the currently active class, demonstrating that evolution is visible within the past 2 - 3 Gyr. We also investigate unusual populations of blue and very red non-star forming galaxies and we suggest that the former are likely to be the progenitors of galaxies which will lie on the CMR, while the colours of the latter possibly reflect dust reddening. We show that the cluster galaxies at large radii consist of both backsplash ones and those that are infalling to the cluster for the first time. We make a comparison to the field population at z similar to 0.1 and examine the broad differences between the two populations. Individually, the clusters show significant variation in their galaxy populations which we suggest reflects their recent infall histories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Northern HIPASS catalogue (NHICAT) is the northern extension of the HIPASS catalogue, HICAT. This extension adds the sky area between the declination (Dec.) range of +2 degrees < delta < +25 degrees 30' to HICAT's Dec. range of -90 degrees < delta < +2 degrees. HIPASS is a blind H I survey using the Parkes Radio Telescope covering 71 per cent of the sky (including this northern extension) and a heliocentric velocity range of - 1280 to 12 700 km s(-1). The entire Virgo Cluster region has been observed in the Northern HIPASS. The galaxy catalogue, NHICAT, contains 1002 sources with nu(hel) > 300 km s(-1). Sources with -300 < nu(hel) < 300 km s(-1) were excluded to avoid contamination by Galactic emission. In total, the entire HIPASS survey has found 5317 galaxies identified purely by their HI content. The full galaxy catalogue is publicly available at http://hipass.aus-vo.org.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Root respiration uses a significant proportion of photosynthetically fixed carbon (C) and is a globally important source of C liberated from soils. Mangroves, which are an important and productive forest resource in many tropical and subtropical countries, sustain a high ratio of root to shoot biomass which may indicate that root respiration is a particularly important component in mangrove forest carbon budgets. Mangroves are often exposed to nutrient pollution from coastal waters. Here we assessed the magnitude of fine root respiration in mangrove forests in Belize and investigated how root respiration is influenced by nutrient additions. Respiration rates of excised fine roots of the mangrove, Rhizophora mangle L., were low (4.01 +/- 0.16 nmol CO2 g(-1) s(-1)) compared to those measured in temperate tree species at similar temperatures. In an experiment where trees where fertilized with nitrogen (N) or phosphorus (P) in low productivity dwarf forests (1-2 m height) and more productive, taller (47 m height) seaward fringing forests, respiration of fine roots did not vary consistently with fertilization treatments or with forest stature. Fine roots of taller fringe trees had higher concentrations of both N and P compared to dwarf trees. Fertilization with P enhanced fine root P concentrations in both dwarf and fringe trees, but reduced root N concentrations compared to controls. Fertilization with N had no effect on root N or P concentrations. Unlike photosynthetic C gain and growth, which is strongly limited by P availability in dwarf forests at this site, fine root respiration (expressed on a mass basis) was variable, but showed no significant enhancements with nutrient additions. Variation in fine root production and standing biomass are, therefore, likely to be more important factors determining C efflux from mangrove sediments than variations in fine root respiration per unit mass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have found the peculiar galaxy NGC 922 to be a new drop-through ring galaxy using multiwavelength (ultraviolet-radio) imaging and spectroscopic observations. Its 'C'-shaped morphology and tidal plume indicate a recent strong interaction with its companion which was identified with these observations. Using numerical simulations we demonstrate that the main properties of the system can be generated by a high-speed off-axis drop-through collision of a small galaxy with a larger disc system, thus making NGC 922 one of the nearest known collisional ring galaxies. While these systems are rare in the local Universe, recent deep Hubble Space Telescope images suggest they were more common in the early Universe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an application of Mathematical Morphology (MM) for the classification of astronomical objects, both for star/galaxy differentiation and galaxy morphology classification. We demonstrate that, for CCD images, 99.3 +/- 3.8% of galaxies can be separated from stars using MM, with 19.4 +/- 7.9% of the stars being misclassified. We demonstrate that, for photographic plate images, the number of galaxies correctly separated from the stars can be increased using our MM diffraction spike tool, which allows 51.0 +/- 6.0% of the high-brightness galaxies that are inseparable in current techniques to be correctly classified, with only 1.4 +/- 0.5% of the high-brightness stars contaminating the population. We demonstrate that elliptical (E) and late-type spiral (Sc-Sd) galaxies can be classified using MM with an accuracy of 91.4 +/- 7.8%. It is a method involving fewer 'free parameters' than current techniques, especially automated machine learning algorithms. The limitation of MM galaxy morphology classification based on seeing and distance is also presented. We examine various star/galaxy differentiation and galaxy morphology classification techniques commonly used today, and show that our MM techniques compare very favourably.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An emerging issue in the field of astronomy is the integration, management and utilization of databases from around the world to facilitate scientific discovery. In this paper, we investigate application of the machine learning techniques of support vector machines and neural networks to the problem of amalgamating catalogues of galaxies as objects from two disparate data sources: radio and optical. Formulating this as a classification problem presents several challenges, including dealing with a highly unbalanced data set. Unlike the conventional approach to the problem (which is based on a likelihood ratio) machine learning does not require density estimation and is shown here to provide a significant improvement in performance. We also report some experiments that explore the importance of the radio and optical data features for the matching problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): J.2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We determined the rate of migration of coastal vegetation zones in response to salt-water encroachment through paleoecological analysis of mollusks in 36 sediment cores taken along transects perpendicular to the coast in a 5.5 km2 band of coastal wetlands in southeast Florida. Five vegetation zones, separated by distinct ecotones, included freshwater swamp forest, freshwater marsh, and dwarf, transitional and fringing mangrove forest. Vegetation composition, soil depth and organic matter content, porewater salinity and the contemporary mollusk community were determined at 226 sites to establish the salinity preferences of the mollusk fauna. Calibration models allowed accurate inference of salinity and vegetation type from fossil mollusk assemblages in chronologically calibrated sediments. Most sediments were shallow (20–130 cm) permitting coarse-scale temporal inferences for three zones: an upper peat layer (zone 1) representing the last 30–70 years, a mixed peat-marl layer (zone 2) representing the previous ca. 150–250 years and a basal section (zone 3) of ranging from 310 to 2990 YBP. Modern peat accretion rates averaged 3.1 mm yr)1 while subsurface marl accreted more slowly at 0.8 mm yr)1. Salinity and vegetation type for zone 1 show a steep gradient with freshwater communities being confined west of a north–south drainage canal constructed in 1960. Inferences for zone 2 (pre-drainage) suggest that freshwater marshes and associated forest units covered 90% of the area, with mangrove forests only present along the peripheral coastline. During the entire pre-drainage history, salinity in the entire area was maintained below a mean of 2 ppt and only small pockets of mangroves were present; currently, salinity averages 13.2 ppt and mangroves occupy 95% of the wetland. Over 3 km2 of freshwater wetland vegetation type have been lost from this basin due to salt-water encroachment, estimated from the mollusk-inferred migration rate of freshwater vegetation of 3.1 m yr)1 for the last 70 years (compared to 0.14 m yr)1 for the pre-drainage period). This rapid rate of encroachment is driven by sea-level rise and freshwater diversion. Plans for rehydrating these basins with freshwater will require high-magnitude re-diversion to counteract locally high rates of sea-level rise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concentrations and fluxes of C, N, and P were measured in dwarf and fringe mangrove wetlands along the Taylor River, Florida, USA from 1996 to 1998. Data from these studies revealed considerable spatial and temporal variability. Concentrations of C, N, and P in the dwarf wetland showed seasonal trends, while water source was better at explaining concentrations in the fringe wetland. The total and dissolved organic carbon (TOC and DOC), total nitrogen (TN), and total phosphorus (TP) content of both wetlands was higher during the wet season or when water was flowing to the south (Everglades source). Concentrations of nitrate plus nitrite (NOx –), ammonium (NH4 +), and soluble reactive phosphorus (SRP) in the fringe wetland were all highest during the dry season or northerly flow (bay source). Nutrient concentrations most effectively explained patterns of flux in both wetlands. Increased wetland uptake of a given constituent was usually a function of its availability in the water column. However, the release of NOx – from the dwarf wetland was related to the NH4 + concentration, suggesting a nitrification signal. Nitrogen flux in the dwarf wetland was also related to surface water salinity and temperature. Our findings indicate that freshwater Everglades marshes are an important source of dissolved organic matter to these wetlands, while Florida Bay may be a source of dissolved inorganic nutrients. Our data also suggest that temperature, salinity, and nutrient concentrations (as driven by season and water source) influence patterns of materials flux in this mangrove wetland. Applying long-term water quality data to the relationships we extracted from these flux data, we estimated that TN and TP were imported by the dwarf wetland 87 ± 10 and 48 ± 17% of the year, respectively. With Everglades restoration, modifications in freshwater delivery may have considerable effects on the exchanges of nutrients and organic matter in these transitional mangrove wetlands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We performed two litter decomposition experiments using nearly-senesced red mangrove (Rhizophora mangle L.) leaves collected from an Everglades dwarf mangrove wetland to understand the short-term (3 weeks) and long-term (1 year) changes in mass, as well as C-, N-, and P-content of decomposing leaf litter. We expected that leaves decomposing in this oligotrophic environment would be short-term sources of C, N, and P, but potential long-term sinks for N and P. In May 1998, we conducted a 3-week leaching experiment, incubating fresh, individual leaves in seawater for up to 21 days. From May 1997 to May 1998, leaf litter in mesh bags decomposed on the forest floor at two dwarf mangrove sites. Leaching accounted for about 33% loss of dry mass from R. mangle leaves after 3 weeks. Leaching losses were rapid, peaking by day 2, and large, with leachate concentrations of total organic carbon (TOC) and total phosphorus (TP) increasing by more than an order of magnitude after 3 weeks. Mean leaf C:N increased from 105 to 115 and N:P increased from a mean of 74 to 95 after 21 days, reflecting the relatively large leaching losses of N and P. Loss of mass in the litterbags leveled off after 4 months, with roughly 60%dry mass remaining (DMR) after nearly 1 year of decomposition. The mass of carbon in each litterbag declined significantly after 361 days, but the mass of nitrogen and phosphorus doubled, indicating long-term accumulation of these constituents into the detritus. Subsequently, the leaf C:N ratio dropped significantly from 90 to 34 after 361 days. Following an initial 44-day increase, leaf N:P decreased from 222 to 144, reflecting high accumulation of P relative to N. A review of several estuarine macrophyte decomposition studies reveals a trend in nitrogen accumulation through time regardless of site, but suggests no clear pattern for C and P. We believe that the increase in litter P observed in this study was indicative of the P-limited status of the greater Everglades ecosystem and that decomposing mangrove litter may represent a substantial phosphorus pool in the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Freeze events significantly influence landscape structure and community composition along subtropical coastlines. This is particularly true in south Florida, where such disturbances have historically contributed to patch diversity within the mangrove forest, and have played a part in limiting its inland transgression. With projected increases in mean global temperatures, such instances are likely to become much less frequent in the region, contributing to a reduction in heterogeneity within the mangrove forest itself. To understand the process more clearly, we explored the dynamics of a Dwarf mangrove forest following two chilling events that produced freeze-like symptoms, i.e., leaf browning, desiccation, and mortality, and interpreted the resulting changes within the context of current winter temperatures and projected future scenarios. Structural effects from a 1996 chilling event were dramatic, with mortality and tissue damage concentrated among individuals comprising the Dwarf forest's low canopy. This disturbance promoted understory plant development and provided an opportunity for Laguncularia racemosa to share dominance with Rhizophora mangle. Mortality due to the less severe 2001 event was greatest in the understory, probably because recovery of the protective canopy following the earlier freeze was still incomplete. Stand dynamics were static over the same period in nearby unimpacted sites. The probability of reaching temperatures as low as those recorded at a nearby meteorological station (≤3 °C) under several warming scenarios was simulated by applying 1° incremental temperature increases to a model developed from a 42-year temperature record. According to the model, the frequency of similar chilling events decreased from once every 1.9 years at present to once every 3.4 and 32.5 years with 1 and 4 °C warming, respectively. The large decrease in the frequency of these events would eliminate an important mechanism that maintains Dwarf forest structure, and promotes compositional diversity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors summarize the main findings of the Florida Coastal Everglades Long-Term Ecological Research (FCE-LTER) program in the EMER, within the context of the Comprehensive Everglades Restoration Plan (CERP), to understand how regional processes, mediated by water flow, control population and ecosystem dynamics across the EMER landscape. Tree canopies with maximum height <3 m cover 49% of the EMER, particularly in the SE region. These scrub/dwarf mangroves are the result of a combination of low soil phosphorus (P < 59 μg P g dw−1) in the calcareous marl substrate and long hydroperiod. Phosphorus limits the EMER and its freshwater watersheds due to the lack of terrigenous sediment input and the phosphorus-limited nature of the freshwater Everglades. Reduced freshwater delivery over the past 50 years, combined with Everglades compartmentalization and a 10 cm rise in coastal sea level, has led to the landward transgression (1.5 km in 54 years) of the mangrove ecotone. Seasonal variation in freshwater input strongly controls the temporal variation of nitrogen and P exports (99%) from the Everglades to Florida Bay. Rapid changes in nutrient availability and vegetation distribution during the last 50 years show that future ecosystem restoration actions and land use decisions can exert a major influence, similar to sea level rise over the short term, on nutrient cycling and wetland productivity in the EMER.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the 1960s, water management practices resulted in the conversion of the wetlands that fringe northeastern Florida Bay (USA) from freshwater/oligohaline herbaceous marshes to dwarf red mangrove forests. Coincident with this conversion were several ecological changes to Florida Bay’s fauna, including reductions in the abundances of top trophic-level consumers: piscivorous fishes, alligators, crocodiles, and wading birds. Because these taxa rely on a common forage base of small demersal fishes, food stress has been implicated as playing a role in their respective declines. In the present study, we monitored the demersal fishes seasonally at six sites over an 8-year time period. During monitoring, extremely high rainfall conditions occurred over a 3.5-year period leading to salinity regimes that can be viewed as “windows” to the area’s natural past and future restored states. In this paper, we: (1) examine the changes in fish communities over the 8-year study period and relate them to measured changes in salinity; (2) make comparisons among marine, brackish and freshwater demersal fish communities in terms of species composition, density, and biomass; and (3) discuss several implications of our findings in light of the intended and unintended water management changes that are planned or underway as part of Everglades restoration. Results suggest the reduction in freshwater flow to Florida Bay over the last several decades has reduced demersal fish populations, and thus prey availability for apex consumers in the coastal wetlands compared to the pre-drainage inferred standard. Furthermore, greater discharge of freshwater toward Florida Bay may result in the re-establishment of pre-1960s fauna, including a more robust demersal-fish community that should prompt increases in populations of several important predatory species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many coastal wetland communities of south Florida have been cut off from freshwater sheet flow for decades and are migrating landward due to salt-water encroachment. A paleoecological study using mollusks was conducted to assess the rates and effects of salt-water encroachment due to freshwater diversion and sea level rise on coastal wetland basins in Biscayne National Park. Modem mollusk distributions taken from 226 surface sites were used to determine local habitat affinities which were applied to infer past environments from mollusk distributions found in soil cores. Mollusks species compositions were found to be strongly correlated to habitat and salinity, providing reliable predictions. Wetland soils were cored to bedrock at 36locations. Mollusks were abundant throughout the cores and 15 of the 20 most abundant taxa served as bioindicators of salinity and habitat. Historic accounts coupled with mollusk based inference models indicate (1) increasing salinity levels along the coast and encroaching into the interior with mangroves communities currently migrating westward, (2) replacement of a mixed graminoid-mangrove zone by a dense monoculture of dwarf mangroves, and (3) a confinement of freshwater and freshwater graminoid marsh to landward areas between urban developments and drainage canals.