917 resultados para GOLD NANOCAGES
Resumo:
A range of arylgold compounds have been synthesized and investigated as single-component catalysts for the hydrophenoxylation of unactivated internal alkynes. Both carbene and phosphine-ligated compounds were screened as part of this work, and the most efficient catalysts contained either JohnPhos or IPr/SIPr. Phenols bearing either electron-withdrawing or electron-donating groups were efficiently added using these catalysts. No silver salts, acids, or solvents were needed for the catalysis, and either microwave or conventional heating afforded moderate to excellent yields of the vinyl ethers.
Resumo:
We demonstrate a reliable microfabrication process for a combined atomic force microscopy (AFM) and scanning electrochemical microscopy (SECM) measurement tool. Integrated cone-shaped sensors with boron doped diamond (BDD) or gold (Au) electrodes were fabricated from commercially available AFM probes. The sensor formation process is based on mature semiconductor processing techniques, including focused ion beam (FIB) machining, and highly selective reactive ion etching (RIE). The fabrication approach preserves the geometry of the original AFM tips resulting in well reproducible nanoscaled sensors. The feasibility and functionality of the fully featured tips are demonstrated by cyclic voltammetry, showing good agreement between the measured and calculated currents of the cone-shaped AFM-SECM electrodes.
Resumo:
The aim of this in vitro study was to assess the agreement among four techniques used as gold standard for the validation of methods for occlusal caries detection. Sixty-five human permanent molars were selected and one site in each occlusal surface was chosen as the test site. The teeth were cut and prepared according to each technique: stereomicroscopy without coloring (1), dye enhancement with rhodamine B (2) and fuchsine/acetic light green (3), and semi-quantitative microradiography (4). Digital photographs from each prepared tooth were assessed by three examiners for caries extension. Weighted kappa, as well as Friedman's test with multiple comparisons, was performed to compare all techniques and verify statistical significant differences. Results: kappa values varied from 0.62 to 0.78, the latter being found by both dye enhancement methods. Friedman's test showed statistical significant difference (P < 0.001) and multiple comparison identified these differences among all techniques, except between both dye enhancement methods (rhodamine B and fuchsine/acetic light green). Cross-tabulation showed that the stereomicroscopy overscored the lesions. Both dye enhancement methods showed a good agreement, while stereomicroscopy overscored the lesions. Furthermore, the outcome of caries diagnostic tests may be influenced by the validation method applied. Dye enhancement methods seem to be reliable as gold standard methods.
Resumo:
The aim of this study was to examine the wear behavior of conical crowns with electroplated gold copings that are used to connect implants and teeth to a removable denture. Gold alloy and zirconium dioxide ceramic crowns were compared.
Resumo:
Through a cross-coupling reaction, aryl phosphonates are produced in high yields when the corresponding aryl bromides are reacted with a gold phosphorylating agent in the presence of a palladium catalyst and an appropriate ligand. To the best of our knowledge, this transformation is the first example involving the transfer of a phosphonate functional group from a gold complex to palladium that has been reported. Throughout the investigation, three gold phosphorylating agents were screened for activity towards the phosphorylation of aryl bromides. Aryl bromides with electrondonating and electron-withdrawing groups were successfully employed in the crosscoupling reactions. All cross-coupling reactions were carried out in THF at room temperature (25ºC) or in a microwave reactor (CEM Discover) at 60ºC for 30 or 60 minutes. The effects of changing reaction parameters such as time, temperature, catalyst and free ligand loading have been investigated. All aryl bromide substrates tested in the cross-coupling reactions produced phosphorylated products.
Resumo:
We describe a method for evaluating an ensemble of predictive models given a sample of observations comprising the model predictions and the outcome event measured with error. Our formulation allows us to simultaneously estimate measurement error parameters, true outcome — aka the gold standard — and a relative weighting of the predictive scores. We describe conditions necessary to estimate the gold standard and for these estimates to be calibrated and detail how our approach is related to, but distinct from, standard model combination techniques. We apply our approach to data from a study to evaluate a collection of BRCA1/BRCA2 gene mutation prediction scores. In this example, genotype is measured with error by one or more genetic assays. We estimate true genotype for each individual in the dataset, operating characteristics of the commonly used genotyping procedures and a relative weighting of the scores. Finally, we compare the scores against the gold standard genotype and find that Mendelian scores are, on average, the more refined and better calibrated of those considered and that the comparison is sensitive to measurement error in the gold standard.
Resumo:
In evaluating the accuracy of diagnosis tests, it is common to apply two imperfect tests jointly or sequentially to a study population. In a recent meta-analysis of the accuracy of microsatellite instability testing (MSI) and traditional mutation analysis (MUT) in predicting germline mutations of the mismatch repair (MMR) genes, a Bayesian approach (Chen, Watson, and Parmigiani 2005) was proposed to handle missing data resulting from partial testing and the lack of a gold standard. In this paper, we demonstrate an improved estimation of the sensitivities and specificities of MSI and MUT by using a nonlinear mixed model and a Bayesian hierarchical model, both of which account for the heterogeneity across studies through study-specific random effects. The methods can be used to estimate the accuracy of two imperfect diagnostic tests in other meta-analyses when the prevalence of disease, the sensitivities and/or the specificities of diagnostic tests are heterogeneous among studies. Furthermore, simulation studies have demonstrated the importance of carefully selecting appropriate random effects on the estimation of diagnostic accuracy measurements in this scenario.