901 resultados para GNSS technology and applications series
Resumo:
The study of photophysical and photochemical processes crosses the interest of many fields of research in physics, chemistry and biology. In particular, the photophysical and photochemical reactions, after light absorption by a photosynthetic pigment-protein complex, are among the fastest events in biology, taking place on timescales ranging from tens of femtoseconds to a few nanoseconds. Among the experimental approaches developed for this purpose, the advent of ultrafast transient absorption spectroscopy has become a powerful and widely used technique.[1,2] Focusing on the process of photosynthesis, it relies upon the efficient absorption and conversion of the radiant energy from the Sun. Chlorophylls and carotenoids are the main players in the process. Photosynthetic pigments are typically arranged in a highly organized fashion to constitute antennas and reaction centers, supramolecular devices where light harvesting and charge separation take place. The very early steps in the photosynthetic process take place after the absorption of a photon by an antenna system, which harvests light and eventually delivers it to the reaction center. In order to compete with internal conversion, intersystem crossing, and fluorescence, which inevitably lead to energy loss, the energy and electron transfer processes that fix the excited-state energy in photosynthesis must be extremely fast. In order to investigate these events, ultrafast techniques down to a sub-100 fs resolution must be used. In this way, energy migration within the system as well as the formation of new chemical species such as charge-separated states can be tracked in real time. This can be achieved by making use of ultrafast transient absorption spectroscopy. The basic principles of this notable technique, instrumentation, and some recent applications to photosynthetic systems[3] will be described. Acknowledgements M. Moreno Oliva thanks the MINECO for a “Juan de la Cierva-Incorporación” research contract. References [1] U. Megerle, I. Pugliesi, C. Schriever, C.F. Sailer and E. Riedle, Appl. Phys. B, 96, 215 – 231 (2009). [2] R. Berera, R. van Grondelle and J.T.M. Kennis, Photosynth. Res., 101, 105 – 118 (2009). [3] T. Nikkonen, M. Moreno Oliva, A. Kahnt, M. Muuronen, J. Helaja and D.M. Guldi, Chem. Eur. J., 21, 590 – 600 (2015).
Resumo:
With wireless vehicular communications, Vehicular Ad Hoc Networks (VANETs) enable numerous applications to enhance traffic safety, traffic efficiency, and driving experience. However, VANETs also impose severe security and privacy challenges which need to be thoroughly investigated. In this dissertation, we enhance the security, privacy, and applications of VANETs, by 1) designing application-driven security and privacy solutions for VANETs, and 2) designing appealing VANET applications with proper security and privacy assurance. First, the security and privacy challenges of VANETs with most application significance are identified and thoroughly investigated. With both theoretical novelty and realistic considerations, these security and privacy schemes are especially appealing to VANETs. Specifically, multi-hop communications in VANETs suffer from packet dropping, packet tampering, and communication failures which have not been satisfyingly tackled in literature. Thus, a lightweight reliable and faithful data packet relaying framework (LEAPER) is proposed to ensure reliable and trustworthy multi-hop communications by enhancing the cooperation of neighboring nodes. Message verification, including both content and signature verification, generally is computation-extensive and incurs severe scalability issues to each node. The resource-aware message verification (RAMV) scheme is proposed to ensure resource-aware, secure, and application-friendly message verification in VANETs. On the other hand, to make VANETs acceptable to the privacy-sensitive users, the identity and location privacy of each node should be properly protected. To this end, a joint privacy and reputation assurance (JPRA) scheme is proposed to synergistically support privacy protection and reputation management by reconciling their inherent conflicting requirements. Besides, the privacy implications of short-time certificates are thoroughly investigated in a short-time certificates-based privacy protection (STCP2) scheme, to make privacy protection in VANETs feasible with short-time certificates. Secondly, three novel solutions, namely VANET-based ambient ad dissemination (VAAD), general-purpose automatic survey (GPAS), and VehicleView, are proposed to support the appealing value-added applications based on VANETs. These solutions all follow practical application models, and an incentive-centered architecture is proposed for each solution to balance the conflicting requirements of the involved entities. Besides, the critical security and privacy challenges of these applications are investigated and addressed with novel solutions. Thus, with proper security and privacy assurance, these solutions show great application significance and economic potentials to VANETs. Thus, by enhancing the security, privacy, and applications of VANETs, this dissertation fills the gap between the existing theoretic research and the realistic implementation of VANETs, facilitating the realistic deployment of VANETs.
Resumo:
In this paper, equivalence constants between various polynomial norms are calculated. As an application, we also obtain sharp values of the Hardy Littlewood constants for 2-homogeneous polynomials on l(p)(2) spaces, 2 < p <= infinity. We also provide lower estimates for the Hardy-Littlewood constants for polynomials of higher degrees.
Resumo:
This thesis builds a framework for evaluating downside risk from multivariate data via a special class of risk measures (RM). The peculiarity of the analysis lies in getting rid of strong data distributional assumptions and in orientation towards the most critical data in risk management: those with asymmetries and heavy tails. At the same time, under typical assumptions, such as the ellipticity of the data probability distribution, the conformity with classical methods is shown. The constructed class of RM is a multivariate generalization of the coherent distortion RM, which possess valuable properties for a risk manager. The design of the framework is twofold. The first part contains new computational geometry methods for the high-dimensional data. The developed algorithms demonstrate computability of geometrical concepts used for constructing the RM. These concepts bring visuality and simplify interpretation of the RM. The second part develops models for applying the framework to actual problems. The spectrum of applications varies from robust portfolio selection up to broader spheres, such as stochastic conic optimization with risk constraints or supervised machine learning.
Resumo:
This is a CoLab Workshop organized as an initiative of the UT Austin | Portugal Program to reinforce the Portuguese competences in Nonlinear Mechanics and in complex problems arising from applications to the mathematical modeling and simulations in the Life Sciences. The Workshop provides a place to exchange recent developments, discoveries and progresses in this challenging research field. The main goal is to bring together doctoral candidates, postdoctoral scientists and graduates interested in the field, giving them the opportunity to make scientific interactions and new connections with established experts in the interdisciplinary topics covered by the event. Another important goal of the Workshop is to promote collaboration between members of the different areas of the UT Austin | Portugal community.
Resumo:
Using Macaulay's correspondence we study the family of Artinian Gorenstein local algebras with fixed symmetric Hilbert function decomposition. As an application we give a new lower bound for the dimension of cactus varieties of the third Veronese embedding. We discuss the case of cubic surfaces, where interesting phenomena occur.
Resumo:
Extensive livestock production is supported by natural and biodiverse pastures, characterized by marked seasonal variation of biomass, plant species and growth stage. The use of the food resources and the occupation of grazing space can be very heterogeneous in such conditions due to ruminants grazing behaviour. Successful grazing and pasture management requires an understanding of the adjustment mechanisms behind the grazing behaviour that enables adaptation to grazing conditions. Use of GNSS technology allows a quick and effective grazing data collection which is, however expensive, limiting its application to research purposes. This paper reviews the principles for the application of GNSS technology and evaluates the use of inexpensive commercial GNSS receivers (commercial of the shelf - COTS: CatTrackTM”). Six receivers were used for six data collection period over two months of continuous grazing on a natural pasture. The measured static and dynamic accuracy of the receivers is 14m and 40m, respectively. The precision was 3m and the reliability 80%. The tested equipment allows the differentiation between animal activities (grazing, resting and transit). It also determines sheep locations, allowing the characterization of patterns, pathways and preferred areas. It is concluded that the COTS equipment has a high quality / price ratio, so it can become an important support decision tool essential to a more precise pasture management.
Resumo:
This final thesis is aimed at summarizing the research program I have carried out during my PhD studies, that has been dealing with the design, the preparation, characterization and applications of new Re(I), Ru(II), and Ir(III) metal complexes containing anionic ligands such as 5-aryl tetrazolates [R-CN4]- or their neutral analogues, N-alkyltetrazoles [R-CN4-R1]. Chapter 1 consists of a brief introduction on tetrazoles and metal-tetrazolato complexes, and on the photophysical properties of d6 transition metal complexes. In chapter 2, the synthesis, characterization and study of the photophysical properties of new luminescent Ir(III)-tetrazolate complexes are discussed. Moreover, the application of one of the new Ir(III)-CN complexes as emissive core in the fabrication of an OLED device is reported. In chapter 3, the study of the antimicrobial activity of new Ru(II)-alkyltetrazole complexes is reported. When the pentatomic ring was substituted with a long alkyl residue, antimicrobial activity toward Deinococcus radiodurans was observed. In chapter 4, a new family of luminescent Re(I)-tetrazolate complexes is reported. In this study, different N-alkyl tetrazoles play the role of diimine (diim) ligands in the preparation of new Re(I) tricarbonyl complexes. In addition, absorption and emission titration experiments were performed to study their interaction with Bovine Serum Albumin (BSA). In chapter 5, the synthesis and characterization of new luminescent Re(I)-tetrazolate complexes are discussed. The use of sulfonated diimine ligands in the preparation of new Re(I) tricarbonyl complexes led to the first example Re(I) complexes for the luminescent staining of proteins. In chapter 6, the synthesis, a new family of Ir(III)-NO2 tetrazole complexes displaying unexpected photophysical properties are discussed. Moreover, the possibility to tune the luminescent output of such systems upon chemical modification of the pending nitro group was verified by performing reduction tests with sodium dithionite; this represents encouraging evidence for their possible application as hypoxia-responsive luminescent probes in bioimaging.
Resumo:
This work describes the synthesis of a propargylcarbamate-functionalized isophthalate ligand and its use in the solvothermal preparation of a new copper(II)-based metal organic framework named [Cu(1,3-YBDC)]ˑxH2O (also abbreviated as Cu-MOF. The characterization of this compound was performed using several complementary techniques such as infrared (ATR-FTIR) and Raman spectroscopy, X-ray powder diffraction spectroscopy (PXRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS) as well as thermal and surface area measurements. Synchrotron X-ray diffraction analysis revealed that this MOF contains a complex network of 5-substituted isophthalate anions bound to Cu(II) centers, arranged in pairs within paddlewheel (or “Chinese lantern”) structure with a short Cu…Cu distance of 2.633 Å. Quite unexpectedly, the apical atom in the paddlewheel structure belongs to the carbamate carbonyl oxygen atom. Such extra coordination by the propargylcarbamate groups drastically reduces the MOF porosity, a feature that was also confirmed by BET measurements. Indeed, its surface area was determined to be low (14.5 ± 0.8 m2/g) as its total pore volume (46 mm3/g). Successively the Cu-MOF was treated with HAuCl4 with the aim of studying the ability of the propargylcarbamate functionality to capture the Au(III) ion and reduce it to Au(0) to give gold nanoparticles (AuNPs). The overall amount of gold retained by the Cu-MOF/Au was determined by AAS while the amount of gold and its oxidation state on the surface of the MOF was studied by XPS. A glassy carbon (GC) electrode was drop-casted with a Cu-MOF suspension to electrochemically characterize the material through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The performance of the modified electrodes towards nitrite oxidation was tested by CV and chronoamperometry.
Resumo:
Augmented reality has been growing extensively over the years in all aspects and multiple fields. My aim in this paper is to present a comprehensive study on augmented reality(AR) hardware and its applications from early developments to the possible future trends. Particularly my research is more focused on last 11 years(2012-2022), where I systematically reviewed 30 research papers per year to get a clear knowledge on trends of AR. A total of 330 publications were reviewed and grouped according to their application. The review's main contribution is to show the entire landscape of AR research and to provide a broad view of how it has evolved. Along with various AR glasses history and specifications are presented in detail. In the penultimate chapter I explained my methodology of research following my analysis from the past to the present along with my thoughts for the future. To conclude my study, In the final chapter I made some statements about possible future with AR, VR and XR(extended reality).
Resumo:
Instrument transformers serve an important role in the protection and isolation of AC electrical systems for measurements of different electrical parameters like voltage, current, power factor, frequency, and energy. As suggested by name these transformers are used in connection with suitable measuring instruments like an ammeter, wattmeter, voltmeter, and energy meters. We have seen how higher voltages and currents are transformed into lower magnitudes to provide isolation between power networks, relays, and other instruments. Reducing transient, suppressing electrical noises in sensitive devices, standardization of instruments and relays up to a few volts and current. Transformer performance directly affects the accuracy of power system measurements and the reliability of relay protection. We classified transformers in terms of purpose, insulating medium, Voltage ranges, temperature ranges, humidity or environmental effect, indoor and outdoor use, performance, Features, specification, efficiency, cost analysis, application, benefits, and limitations which enabled us to comprehend their correct use and selection criteria based on our desired requirements. We also discussed modern Low power instrument transformer products that are recently launched or offered by renowned companies like Schneider Electric, Siemens, ABB, ZIV, G&W etc. These new products are innovations and problem solvers in the domain of measurement, protection, digital communication, advance, and commercial energy metering. Since there is always some space for improvements to explore new advantages of Low power instrument transformers in the domain of their wide linearity, high-frequency range, miniaturization, structural and technological modification, integration, smart frequency modeling, and output prediction of low-power voltage transformers.
Resumo:
It is widely assumed that scheduling real-time tasks becomes more difficult as their deadlines get shorter. With deadlines shorter, however, tasks potentially compete less with each other for processors, and this could produce more contention-free slots at which the number of competing tasks is smaller than or equal to the number of available processors. This paper presents a policy (called CF policy) that utilizes such contention-free slots effectively. This policy can be employed by any work-conserving, preemptive scheduling algorithm, and we show that any algorithm extended with this policy dominates the original algorithm in terms of schedulability. We also present improved schedulability tests for algorithms that employ this policy, based on the observation that interference from tasks is reduced when their executions are postponed to contention-free slots. Finally, using the properties of the CF policy, we derive a counter-intuitive claim that shortening of task deadlines can help improve schedulability of task systems. We present heuristics that effectively reduce task deadlines for better scheduability without performing any exhaustive search.
Resumo:
Consider the problem of designing an algorithm with a high utilisation bound for scheduling sporadic tasks with implicit deadlines on identical processors. A task is characterised by its minimum interarrival time and its execution time. Task preemption and migration is permitted. Still, low preemption and migration counts are desirable. We formulate an algorithm with a utilisation bound no less than 66.¯6%, characterised by worst-case preemption counts comparing favorably against the state-of-the-art.
Resumo:
We focus on large-scale and dense deeply embedded systems where, due to the large amount of information generated by all nodes, even simple aggregate computations such as the minimum value (MIN) of the sensor readings become notoriously expensive to obtain. Recent research has exploited a dominance-based medium access control(MAC) protocol, the CAN bus, for computing aggregated quantities in wired systems. For example, MIN can be computed efficiently and an interpolation function which approximates sensor data in an area can be obtained efficiently as well. Dominance-based MAC protocols have recently been proposed for wireless channels and these protocols can be expected to be used for achieving highly scalable aggregate computations in wireless systems. But no experimental demonstration is currently available in the research literature. In this paper, we demonstrate that highly scalable aggregate computations in wireless networks are possible. We do so by (i) building a new wireless hardware platform with appropriate characteristics for making dominance-based MAC protocols efficient, (ii) implementing dominance-based MAC protocols on this platform, (iii) implementing distributed algorithms for aggregate computations (MIN, MAX, Interpolation) using the new implementation of the dominance-based MAC protocol and (iv) performing experiments to prove that such highly scalable aggregate computations in wireless networks are possible.
Resumo:
Do trabalho em causa resultou a seguinte comunicação: Leal, A.S., Coentro, S., Pereira, S., Fernandes, L., Alves, L., Muralha, V.S.F.. ‘’The collection of Hispano-Moresque tiles from the Museum of the Roman Theatre, in Lisboa: Chemical characterisation by μ–PIXE’’. International Conference on Nuclear Microprobe Technology and Applications’’, Pádua, Itália, 6 a 11 Julho de 2014.