985 resultados para GEL SOFT LITHOGRAPHY
Resumo:
Europium and terbium complexes with 1,10-phenanthroline were introduced into silica gel by the sol-gel method. The luminescence behavior of the complexes in silica gels was studied compared with the corresponding solid state complexes by means of emission, excitation spectra and lifetimes. (C) 1998 Published by Elsevier Science S.A. All rights reserved.
Resumo:
Hybrid materials incorporating poly(ethylene glycol) (PEG) with tetraethoxysilane (TEOS) via a sol-gel process were studied for a wide range of compositions of PEG by DSC and high resolution solid-state C-13- and Si-29-NMR spectroscopy. The results indicate that the microstructure of the hybrid materials and the crystallization behavior of PEG in hybrids strongly depend on the relative content of PEG. With an increasing content of PEG, the microstructure of hybrid materials changes a lot, from intimate mixing to macrophase separation. It is found that the glass transition temperatures (T-g) (around 373 K) of PEG homogeneously embedded in a silica network are much higher than that (about 223 K) of pure PEG and also much higher in melting temperatures T-m (around 323 K) than PEG crystallites in heterogeneous hybrids. Meanwhile, the lower the PEG content, the more perfect the silica network, and the higher the T-g of PEG embedded in hybrids. An extended-chain structure of PEG was supposed to be responsible for the unusually high T-g of PEG. Homogeneous PEG-TEOS hybrids on a molecular level can be obtained provided that the PEG. content in the hybrids is less than 30% by weight. (C) 1998 John Wiley & Sons, Inc.
Resumo:
The luminescence properties of silica gels and silica gels doped with two rare earth complexes, Eu(TTA)(3) and Tb(o-CBA)(3) (TTA=thenoyltriffuocetate, o-CBA=o-chlorobenzoic acid) are reported and discussed. Pure silica gels show a blue luminescence, and the maximum excitation and emission wavelengths depend strongly on the solvents used. Both of the studied rare earth complexes exhibit the characteristic emissions of the rare earth ions in silica gels, i.e., Eu3+5D0-->F-7(J)(J=0,1,2,3,4), Tb3+5D4-->F-7(J)(J=3,4,5,6) transitions. Compared with the pure RE-complexes powder, the silica gels doped with RE-complexes show fewer emission lines of the rare earth ions. Furthermore the rare earth ion (Tb3+) presents a longer lifetime (1346 mu s) in silica gel doped with Tb(o-CBA)3 than in pure Tb((o-CBA)(3) powder (744 mu s). The reasons responsible for these results are discussed in the context.
Resumo:
Ternary complexes of rare earth Eu(dbm)(3).phen and Tb(acac)(3).phen (dbm = dibenzoylmethanide, acac = acetylacetone and phen = 1,10-phenanthroline) were introduced into silica gel by the sol-gel method. The result indicated that the rare earth ions (EU3+ and Tb3+) showed fewer emission lines and slightly lower emission intensities in the silica gel than in the pure rare earth complexes. The lifetimes of rare earth ions in silica gel (Eu3+ and Tb3+) doped with Eu(dbm)(3).phen and Tb(acac)(3).phen were longer than those in purl Eu(dbm)(3).phen and Tb(acac)(3).phen. A very small amount of rare earth complexes doped in a silica gel matrix can retain excellent luminescence properties. (C) 1997 Elsevier Science S.A.
Resumo:
Ternary complexes of terbium with ortho (and pam) aminobenzoic acid and 1,10-phenanthroline were introduced into silica gel by the sol-gel method. The luminescence behavior of the solid-state samples was studied during the sol-gel aging process by means of emission. excitation spectra, lifetimes and quantum efficiencies.
Resumo:
Using a molal conductance method, ion solvation and ion association in polytriethylene glycol dimethacrylate (PTREGD)-LiClO4 gel electrolytes with amorphous ethylene oxide-co-propylene oxide (EO-co-PO, <(M)over bar (n)>, = 1750) as the plasticizer were investigated. It was found that the fraction of solute existing as single ions (alpha(i)) and ion pairs (alpha(p)) decreases, while that of triple ions (alpha(t)) increases linearly with increasing salt concentration. The dependence of these fractions on molecular weight of plasticizer was also examined. It was shown that alpha(i) and alpha(t) increase and alpha(p) decreases with increasing molecular weight. The result of temperature dependence of these fractions was very interesting: when the temperature is lower than 55 degrees C, alpha(i) increases while alpha(p) and alpha(t) decrease with increasing temperature; however, when the temperature is higher than 55 degrees C, the reverse is true.
Resumo:
A new kind of polymer gel electrolyte which is composed of polytriethylene glycol dimethacrylate(PTREGD), propylene carbonate(PC) and LiPF6 has been prepared by thermal polymerization. The conductivity was measured as a function of temperature, and it was found that the Arrhenius equation was held very well through out the salt concentration studied. Maximum room temperature conductivity of 4.95 x 10(-4) S/cm, as well as a minimum activation energy value of 18.90 kJ/mol were obtained at the same salt concentration of 0.22 mol/L.
Resumo:
Gel electrolytes were prepared by thermal polymerization of diethylene glycol dimethacrylate (DIEGD) or its copolymer with methoxy polyethylene glycol monomethacrylate, molecular weight 400 (PEM(400)), at a molar ratio of 3/1 in the presence of propylene carbonate (PC) and LiClO4. Conductivity was measured by impedance spectroscopy. It was found that the conductivity data follow the Arrhenius equation in the homopolymer gel system, while the VTF equation holds true in the copolymer gel system. An increase in conductivity was observed in the copolymer gel system. However, whether in the homopolymer or in the copolymer gel system, a maximum ambient temperature conductivity was found at a salt concentration near 1.50 mol/l. Further, the activation energy values calculated from Arrhenius plots for the homopolymer gel system tended to reach a minimum value with increasing salt concentration. (C) 1996 Elsevier Science Ltd
Resumo:
Gel electrolytes have been prepared by thermal polymerization of poly(polyethylene glycol dimethacrylate) (P(PEGD)) in the presence of propylene carbonate (PC) and alkali metal salts, such as LiClO4, LICF(3)SO(3) and LiBF4. The conductivity was studied by means of impedance spectroscopy, and it is found that the temperature dependence of conductivities follow a Arrhenius relationship when the molar percentage of PC is higher than 75% or LiClO4 concentration is lower than 0.9 mol/l. However, when LiCF3SO3 or LiBF4 is used instead of LiClO4 as the salt, the situation is different. For LICF(3)SO(3), the Arrhenius relationship almost holds true for all the salt concentrations studied; while for LiBF4, the Arrhenius equation hardly fits for any salt concentration. The dependence of activation energy on salt concentration is also examined, both for LiClO4 and LiCF3SO3, the values of E(a) tend to reach a minimum value with increasing salt concentration. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
The soft x-ray reflectivity of multilayer films is affected by the surface roughness on the transverse nanometer scale. Scanning tunneling microscopy (STM) is an ideal instrument for providing high-lateral-resolution roughness measurements for soft x-ray multilayer films that cannot be obtained with other types of instruments on the transverse nanometer scale. The surface roughnesses of Mo/Si, Mo/C, and W/Si soft x-ray multilayer films prepared by an ion-beam-sputtering technique were measured with a STM on the vertical and transverse attributes. The film roughnesses and average spatial wavelengths added to the substrates depend on the multilayer film fabrication conditions, i.e., material combinations, number of layers, and individual layer thickness. These were estimated to lead to a loss of specular reflectivity and variations of the soft x-ray scattering angle distribution. This method points the way to further studies of soft x-ray multilayer film functional properties and can be used as basic guidance for selecting the best coating conditions in the fabrications of soft x-ray multilayer films. (C) 1996 American Vacuum Society.
Resumo:
Ion salvation and ion association in polytriethylene glycol dimethacrylate (PTREGD)-LiClO4 gel-type polymer electrolytes were investigated. It was found that the fraction of solute existing as single ions (alpha(i)) decreases and that of triple ions (alpha(i)) increases linearly with increasing LiClO4 concentration, while for ion pairs, as the salt concentration increases, its fraction (alpha(p)) increases first and then falls down. The findings can be rationalized by the fact that the ionic conductance of the polymer electrolyte may be mainly contributed by triple ions and higher ionic aggregates with unequal numbers of positive and negative charges in the salt concentration range of practical significance, i.e. in the range of 0.5-1.5 mol/l. The temperature dependence of these fractions was also examined. In the case of tetraethylene glycol as the solvent, alpha(i) and alpha(p) increase as the temperature is raised, but alpha(t) decreases as the temperature increases from 25 degrees C to 85 degrees C. It seems that the increase of alpha(i) and alpha(p) results from the redissociation of triple ions at higher temperature, The same changing trend of those fractions is also observed when PEG(400) is used as the solvent.
Resumo:
Y4Al2O9 (YAM) was prepared by a sol-gel process, using yttrium and aluminum citrate complexes as precursors. The sol-gel process produced single-phase YAM at 900 degrees C, as opposed to the conventional solid-state reaction, which led to the formation of other phases, even if at 1600 degrees C. The emission and excitation spectra of Eu3+ and Tb3+ in YAM showed the existence of two luminescence centers, agreeing with the crystal structure of YAM. The spectral properties of the samples are discussed.
Resumo:
Ca4Y6(SiO4)(6)O:A (A = Pb2+, Eu3+, Tb3+, Dy3+) phosphors have been prepared by two methods: the sol-gel method and the conventional dry method. The crystallization processes and the luminescence characteristics of the phosphors were studied, The sol-gel method features low-temperature formation of the phosphor, leading to successful preparation of Pb2+-activated phosphors which could not be prepared by the dry method at high temperature. The (4f)(8-)(4f)(7)(5d)(1) absorption band of Tb3+ and the charge-transfer (CT) band of Eu3+ have higher energies and narrower half-widths in the sol-gel-derived phosphors than in the phosphors prepared by the dry method, respectively. The Tb3+ and Dy3+ ions show stronger emission in the former than in the latter. Both the yellow-to-blue intensity ratio (Y:B) of Dy3+ and the red-to-orange intensity ratio (R:O) of Eu3+ in the sol-gel-derived phosphors are smaller than those for the phosphors derived by the dry method.
Resumo:
A new cembranolide diterpene with a hydroperoxyl substitution was isolated from the marine soft coral Lobophytum crassum. The structure was elucidated on the basis of chemical and spectral methods.
Resumo:
A vertical 2-D numerical model is presented for simulating the interaction between water waves and a soft mud bed. Taking into account nonlinear rheology, a semi-empirical rheological model is applied to this water-mud model, reflecting the combined visco-elasto-plastic properties of soft mud under such oscillatory external forces as water waves. In order to increase the resolution of the flow in the neighborhood of both sides of the inter-surface, a logarithmic grid in the vertical direction is employed for numerical treatment. Model verifications are given through comparisons between the calculated and the measured mud mass transport velocities as well as wave height changes.