991 resultados para GATE INSULATORS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alternative and more efficient computational methods can extend the applicability of model predictive control (MPC) to systems with tight real-time requirements. This paper presents a system-on-a-chip MPC system, implemented on a field-programmable gate array (FPGA), consisting of a sparse structure-exploiting primal dual interior point (PDIP) quadratic program (QP) solver for MPC reference tracking and a fast gradient QP solver for steady-state target calculation. A parallel reduced precision iterative solver is used to accelerate the solution of the set of linear equations forming the computational bottleneck of the PDIP algorithm. A numerical study of the effect of reducing the number of iterations highlights the effectiveness of the approach. The system is demonstrated with an FPGA-in-the-loop testbench controlling a nonlinear simulation of a large airliner. This paper considers many more manipulated inputs than any previous FPGA-based MPC implementation to date, yet the implementation comfortably fits into a midrange FPGA, and the controller compares well in terms of solution quality and latency to state-of-the-art QP solvers running on a standard PC. © 1993-2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We grow ultra-high mass density carbon nanotube forests at 450°C on Ti-coated Cu supports using Co-Mo co-catalyst. X-ray photoelectron spectroscopy shows Mo strongly interacts with Ti and Co, suppressing both aggregation and lifting off of Co particles and, thus, promoting the root growth mechanism. The forests average a height of 0.38 μm and a mass density of 1.6 g cm -3. This mass density is the highest reported so far, even at higher temperatures or on insulators. The forests and Cu supports show ohmic conductivity (lowest resistance ∼22 kΩ), suggesting Co-Mo is useful for applications requiring forest growth on conductors. © 2013 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

IGBTs realise high-performance power converters. Unfortunately, with fast switching of the IGBT-free wheel diode chopper cell, such circuits are intrinsic sources of high-level EMI. Therefore, costly EMI filters or shielding are normally needed on the load and supply side. In order to design these EMI suppression components, designers need to predict the EMI level with reasonable accuracy for a given structure and operating mode. Simplifying the transient IGBT switching current and voltage into a multiple slope switching waveform approximation offers a feasible way to estimate conducted EMI with some accuracy. This method is dependent on the availability of high-fidelity measurements. Also, that multiple slope approximation needs careful and time-costly IGBT parameters optimisation process to approach the real switching waveform. In this paper, Active Voltage Control Gate Drive(AVC GD) is employed to shape IGBT switching into several defined slopes. As a result, Conducted EMI prediction by multiple slope switching approximation could be more accurate, less costly but more friendly for implementation. © 2013 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thyristors are usually three-terminal devices that have four layers of alternating p-type and n-type material (i.e. three p-n junctions) comprising its main power handling section. In contrast to the linear relation which exists between load and control currents in a transistor, the thyristor is bistable. The control terminal of the thyristor, called the gate (G) electrode, may be connected to an integrated and complex structure as a part of the device. Thyristors are used to approximate ideal closed (no voltage drop between anode and cathode) or open (no anode current flow) switches for control of power flow in a circuit. This differs from low-level digital switching circuits that are designed to deliver two distinct small voltage levels while conducting small currents (ideally zero). Thyristor circuits must have the capability of delivering large currents and be able to withstand large externally applied voltages. All thyristor types are controllable in switching from a forward-lockingstate (positive potential applied to the anode with respect to the cathode, with correspondingly little anode current flow) into a forward-conduction state (large forward anode current flowing, with a small anode-cathode potential drop). Most thyristors have the characteristic that after switching from a forward-blocking state into the forward-conduction state, the gate signal can be removed and the thyristor will remain in its forward-conduction mode. This property is termed "latching" and is an important distinction between thyristors and other types of power electronic devices. © 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the use of a percolation-field-effect-transistor for the continuous weak measurement of a spatially Rabi oscillating trapped electron through the change in percolation pathway of the transistor channel. In contrast to conventional devices, this detection mechanism in principle does not require a change in the stored energy of the gate capacitance to modify the drain current, so reducing the measurement back-action. The signal-to-noise ratio and measurement bandwidth are seen to be improved compared to conventional devices, allowing further aspects of the dynamic behaviour to be observed. © 2013 AIP Publishing LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The behavior of trapped electrons, in a dielectric close to the channel of a silicon SOI-FET, is studied by cryogenic microwave spectroscopy. On-resonance microwave excitation causes one of these trapped electrons to undergo spatial Rabi oscillations between widely separated trap sites. This charge displacement causes a change in the drain current of the transistor, resulting in high quality factor resonances in continuous wave spectroscopy. The potential of this effect for non-classical information processing is investigated through polychromatic single-shot spectroscopy, using on-resonance and difference frequencies. Interaction between different trapped electrons is seen in the post excitation behavior and the possibilities of quantum gate operations are discussed. © The Electrochemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of the bandgap narrowing (BGN) on performance of power devices is investigated in detail in this paper. The analysis reveals that the change in the energy band structure caused by BGN can strongly affect the conductivity modulation of the bipolar devices resulting in a completely different performance. This is due to the modified injection efficiency under high-level injection conditions. Using a comprehensive analysis of the injection efficiency in a p-n junction, an analytical model for this phenomenon is developed. BGN model tuning has been proved to be essential in accurately predicting the performance of a lateral insulated-gate bipolar transistor (IGBT). Other devices such as p-i-n diodes or punch-through IGBTs are significantly affected by the BGN, while others, such as field-stop IGBTs or power MOSFETs, are only marginally affected. © 2013 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate a new type of transistors, the electrical/optical "dual-function redox-potential transistors", which is solution processable and environmentally stable. This device consists of vertically staked electrodes that act as gate, emitter and collector. It can perform as a normal transistor, whilst one electrode which is sensitised by dye enables to generate photocurrent when illuminated. Solution processable oxide-nanoparticles were used to form various functional layers, which allow an electrolyte to penetrate through and, consequently, the current between emitter and collector can be controlled by the gate potential modulated distribution of ions. The result here shows that the device performs with high ON-current under low driving voltage (<1â€...V), while the transistor performance can readily be controlled by photo-illumination. Such device with combined optical and electrical functionalities allows single device to perform the tasks that are usually done by a circuit/system with multiple optical and electrical components, and it is promising for various applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As an important step in understanding trap-related mechanisms in AlGaN/GaN transistors, the physical properties of surface states have been analyzed through the study of the transfer characteristics of a MISFET. This letter focused initially on the relationship between donor parameters (concentration and energy level) and electron density in the channel in AlGaN/GaN heterostructures. This analysis was then correlated to dc and pulsed measurements of the transfer characteristics of a MISFET, where the gate bias was found to modulate either the channel density or the donor states. Traps-free and traps-frozen TCAD simulations were performed on an equivalent device to capture the donor behavior. A donor concentration of 1.14× 1013 ∼ cm-2 with an energy level located 0.2 eV below the conduction band edge gave the best fit to measurements. With the approach described here, we were able to analyze the region of the MISFET that corresponds to the drift region of a conventional HEMT. © 1980-2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This letter demonstrates for the first time the effect of the incomplete ionization (I.I.) of the transparent p-anode layer on the static and dynamic characteristics of the field-stop insulated gate bipolar transistors (FS IGBTs). This effect needs to be considered in FS IGBTs TCAD modeling to match accurately the device characteristics across a wide range of temperatures. The acceptor ionization energy (EA) governing the I.I. mechanism for the p-anode is extracted via matching the experimental turn-off waveforms and the static performance with Medici simulator. © 1980-2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work investigates the feasibility of transducing molecular-recognition events into a measurable potentiometric signal. It is shown for the first time that biorecognition of acetylcholine (ACh) can be translated to conformational changes in the enzyme, acetylcholine-esterase (AChE), which in turn induces a measurable change in surface potential. Our results show that a highly sensitive detector for ACh can be obtained by the dilute assembly of AChE on a floating gate derived field effect transistor (FG-FET). A wide concentration range response is observed for ACh (10(-2)-10(-9)M) and for the inhibitor carbamylcholine CCh (10(-6)-10(-11)M). These enhanced sensitivities are modeled theoretically and explained by the combined response of the device to local pH changes and molecular dipole variations due to the enzyme-substrate recognition event.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A gate-modulated nanowire oxide photosensor is fabricated by electron-beam lithography and conventional dry etch processing.. The device characteristics are good, including endurance of up to 10(6) test cycles, and gate-pulse excitation is used to remove persistent photoconductivity. The viability of nanowire oxide phototransistors for high speed and high resolution applications is demonstrated, thus potentially expanding the scope of exploitation of touch-free interactive displays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the variety of applications for biosensors one of the exciting frontiers is to utilize those devices as post-synaptic sensing elements in chemical coupling between neurons and solid-state systems. The first necessary step to attain this challenge is to realize highly efficient detector for neurotransmitter acetylcholine (ACh). Herein, we demonstrate that the combination of floating gate configuration of ion-sensitive field effect transistor (ISFET) together with diluted covalent anchoring of enzyme acetylcholinesterase (AChE) onto device sensing area reveals a remarkable improvement of a four orders of magnitude in dose response to ACh. This high range sensitivity in addition to the benefits of peculiar microelectronic design show, that the presented hybrid provides a competent platform for assembly of artificial chemical synapse junction. Furthermore, our system exhibits clear response to eserine, a competitive inhibitor of AChE, and therefore it can be implemented as an effective sensor of pharmacological reagents, organophosphates, and nerve gases as well. © 2007 Materials Research Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report an electron-beam based method for the nanoscale patterning of the poly(ethylene oxide)/LiClO4 polymer electrolyte. We use the patterned polymer electrolyte as a high capacitance gate dielectric in single nanowire transistors and obtain subthreshold swings comparable to conventional metal/oxide wrap-gated nanowire transistors. Patterning eliminates gate/contact overlap, which reduces parasitic effects and enables multiple, independently controllable gates. The method's simplicity broadens the scope for using polymer electrolyte gating in studies of nanowires and other nanoscale devices. © 2013 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 200V lateral insulated gate bipolar transistor (LIGBT) was successfully developed using lateral superjunction (SJ) in 0.18μm partial silicon on insulator (SOI) HV process. The results presented are based on extensive experimental measurements and numerical simulations. For an n-type lateral SJ LIGBT, the p layer in the SJ drift region helps in achieving uniform electric field distribution. Furthermore, the p-pillar contributes to the on-state current. Furthermore, the p-pillar contributes to sweep out holes during the turn-off process, thus leading to faster removal of plasma. To realize this device, one additional mask layer is required in the X-FAB 0.18μm partial SOI HV process. © 2013 IEEE.