978 resultados para GAS-DETECTION
Resumo:
The upstream oil and gas industry has been contending with massive data sets and monolithic files for many years, but “Big Data” is a relatively new concept that has the potential to significantly re-shape the industry. Despite the impressive amount of value that is being realized by Big Data technologies in other parts of the marketplace, however, much of the data collected within the oil and gas sector tends to be discarded, ignored, or analyzed in a very cursory way. This viewpoint examines existing data management practices in the upstream oil and gas industry, and compares them to practices and philosophies that have emerged in organizations that are leading the way in Big Data. The comparison shows that, in companies that are widely considered to be leaders in Big Data analytics, data is regarded as a valuable asset—but this is usually not true within the oil and gas industry insofar as data is frequently regarded there as descriptive information about a physical asset rather than something that is valuable in and of itself. The paper then discusses how the industry could potentially extract more value from data, and concludes with a series of policy-related questions to this end.
Resumo:
Background: Malaria rapid diagnostic tests (RDTs) are appropriate for case management, but persistent antigenaemia is a concern for HRP2-detecting RDTs in endemic areas. It has been suggested that pan-pLDH test bands on combination RDTs could be used to distinguish persistent antigenaemia from active Plasmodium falciparum infection, however this assumes all active infections produce positive results on both bands of RDTs, an assertion that has not been demonstrated. Methods: In this study, data generated during the WHO-FIND product testing programme for malaria RDTs was reviewed to investigate the reactivity of individual test bands against P. falciparum in 18 combination RDTs. Each product was tested against multiple wild-type P. falciparum only samples. Antigen levels were measured by quantitative ELISA for HRP2, pLDH and aldolase. Results: When tested against P. falciparum samples at 200 parasites/μL, 92% of RDTs were positive; 57% of these on both the P. falciparum and pan bands, while 43% were positive on the P. falciparum band only. There was a relationship between antigen concentration and band positivity; ≥4 ng/mL of HRP2 produced positive results in more than 95% of P. falciparum bands, while ≥45 ng/mL of pLDH was required for at least 90% of pan bands to be positive. Conclusions: In active P. falciparum infections it is common for combination RDTs to return a positive HRP2 band combined with a negative pan-pLDH band, and when both bands are positive, often the pan band is faint. Thus active infections could be missed if the presence of a HRP2 band in the absence of a pan band is interpreted as being caused solely by persistent antigenaemia.
Resumo:
We propose a method for learning specific object representations that can be applied (and reused) in visual detection and identification tasks. A machine learning technique called Cartesian Genetic Programming (CGP) is used to create these models based on a series of images. Our research investigates how manipulation actions might allow for the development of better visual models and therefore better robot vision. This paper describes how visual object representations can be learned and improved by performing object manipulation actions, such as, poke, push and pick-up with a humanoid robot. The improvement can be measured and allows for the robot to select and perform the `right' action, i.e. the action with the best possible improvement of the detector.
Resumo:
Viewer interests, evoked by video content, can potentially identify the highlights of the video. This paper explores the use of facial expressions (FE) and heart rate (HR) of viewers captured using camera and non-strapped sensor for identifying interesting video segments. The data from ten subjects with three videos showed that these signals are viewer dependent and not synchronized with the video contents. To address this issue, new algorithms are proposed to effectively combine FE and HR signals for identifying the time when viewer interest is potentially high. The results show that, compared with subjective annotation and match report highlights, ‘non-neutral’ FE and ‘relatively higher and faster’ HR is able to capture 60%-80% of goal, foul, and shot-on-goal soccer video events. FE is found to be more indicative than HR of viewer’s interests, but the fusion of these two modalities outperforms each of them.
Resumo:
An outbreak detection and response system, using time series moving percentile method based on historical data, in China has been used for identifying dengue fever outbreaks since 2008. For dengue fever outbreaks reported from 2009 to 2012, this system achieved a sensitivity of 100%, a specificity of 99.8% and a median time to detection of 3 days, which indicated that the system was a useful decision tool for dengue fever control and risk-management programs in China.
Hand, foot and mouth disease in China: Evaluating an automated system for the detection of outbreaks
Resumo:
Objective To evaluate the performance of China’s infectious disease automated alert and response system in the detection of outbreaks of hand, foot and mouth (HFM) disease. Methods We estimated size, duration and delay in reporting HFM disease outbreaks from cases notified between 1 May 2008 and 30 April 2010 and between 1 May 2010 and 30 April 2012, before and after automatic alert and response included HFM disease. Sensitivity, specificity and timeliness of detection of aberrations in the incidence of HFM disease outbreaks were estimated by comparing automated detections to observations of public health staff. Findings The alert and response system recorded 106 005 aberrations in the incidence of HFM disease between 1 May 2010 and 30 April 2012 – a mean of 5.6 aberrations per 100 days in each county that reported HFM disease. The response system had a sensitivity of 92.7% and a specificity of 95.0%. The mean delay between the reporting of the first case of an outbreak and detection of that outbreak by the response system was 2.1 days. Between the first and second study periods, the mean size of an HFM disease outbreak decreased from 19.4 to 15.8 cases and the mean interval between the onset and initial reporting of such an outbreak to the public health emergency reporting system decreased from 10.0 to 9.1 days. Conclusion The automated alert and response system shows good sensitivity in the detection of HFM disease outbreaks and appears to be relatively rapid. Continued use of this system should allow more effective prevention and limitation of such outbreaks in China.
Resumo:
Structural damage detection using modal strain energy (MSE) is one of the most efficient and reliable structural health monitoring techniques. However, some of the existing MSE methods have been validated for special types of structures such as beams or steel truss bridges which demands improving the available methods. The purpose of this study is to improve an efficient modal strain energy method to detect and quantify the damage in complex structures at early stage of formation. In this paper, a modal strain energy method was mathematically developed and then numerically applied to a fixed-end beam and a three-story frame including single and multiple damage scenarios in absence and presence of up to five per cent noise. For each damage scenario, all mode shapes and natural frequencies of intact structures and the first five mode shapes of assumed damaged structures were obtained using STRAND7. The derived mode shapes of each intact and damaged structure at any damage scenario were then separately used in the improved formulation using MATLAB to detect the location and quantify the severity of damage as compared to those obtained from previous method. It was found that the improved method is more accurate, efficient and convergent than its predecessors. The outcomes of this study can be safely and inexpensively used for structural health monitoring to minimize the loss of lives and property by identifying the unforeseen structural damages.
Resumo:
This thesis is concerned with the detection and prediction of rain in environmental recordings using different machine learning algorithms. The results obtained in this research will help ecologists to efficiently analyse environmental data and monitor biodiversity.
Resumo:
This paper presents a technique for the automated removal of noise from process execution logs. Noise is the result of data quality issues such as logging errors and manifests itself in the form of infrequent process behavior. The proposed technique generates an abstract representation of an event log as an automaton capturing the direct follows relations between event labels. This automaton is then pruned from arcs with low relative frequency and used to remove from the log those events not fitting the automaton, which are identified as outliers. The technique has been extensively evaluated on top of various auto- mated process discovery algorithms using both artificial logs with different levels of noise, as well as a variety of real-life logs. The results show that the technique significantly improves the quality of the discovered process model along fitness, appropriateness and simplicity, without negative effects on generalization. Further, the technique scales well to large and complex logs.
Resumo:
Due to the increasing recognition of global climate change, the building and construction industry is under pressure to reduce carbon emissions. A central issue in striving towards reduced carbon emissions is the need for a practicable and meaningful yardstick for assessing and communicating greenhouse gas (GHG) results. ISO 14067 was published by the International Organization for Standardization in May 2013. By providing specific requirements in the life cycle assessment (LCA) approach, the standard clarifies the GHG assessment in the aspects of choosing system boundaries and simulating use and end-of-life phases when quantifying carbon footprint of products (CFPs). More importantly, the standard, for the first time, provides step-to-step guidance and standardized template for communicating CFPs in the form of CFP external communication report, CFP performance tracking report, CFP declaration and CFP label. ISO 14067 therefore makes a valuable contribution to GHG quantification and transparent communication and comparison of CFPs. In addition, as cradle-to-grave should be used as the system boundary if use and end-of-life phases can be simulated, ISO 14067 will hopefully promote the development and implementation of simulation technologies, with Building Information Modelling (BIM) in particular, in the building and construction industry.
Resumo:
Business processes are prone to continuous and unexpected changes. Process workers may start executing a process differently in order to adjust to changes in workload, season, guidelines or regulations for example. Early detection of business process changes based on their event logs – also known as business process drift detection – enables analysts to identify and act upon changes that may otherwise affect process performance. Previous methods for business process drift detection are based on an exploration of a potentially large feature space and in some cases they require users to manually identify the specific features that characterize the drift. Depending on the explored feature set, these methods may miss certain types of changes. This paper proposes a fully automated and statistically grounded method for detecting process drift. The core idea is to perform statistical tests over the distributions of runs observed in two consecutive time windows. By adaptively sizing the window, the method strikes a trade-off between classification accuracy and drift detection delay. A validation on synthetic and real-life logs shows that the method accurately detects typical change patterns and scales up to the extent it is applicable for online drift detection.
Resumo:
The study sought to explore the initial impact of the ACT's implementation of roadside oral fluid drug screening program. The results suggest that a number of individuals reported intentions to drug drive in the future. The classical deterrence theory variables of certainty of apprehension, severity and swiftness of sanctions were not predictive of intentions to drug drive in the future. In contrast, having avoided apprehension and having known of others that have avoided apprehension were predictive of intentions to drug drive in the future. Increasing perceptions of the certainty of apprehension, increased testing frequency, and increased awareness of the oral fluid drug screening program could potentially lead to reductions of drug driving and result in safer road environment for all ACT community members.
Resumo:
The dorsal lateral amygdala (LAd) is a vital nucleus for the formation of associations between aversive unconditioned stimuli (US) and neutral stimuli, such as auditory tones, which can become conditioned (CS) to the US through temporal pairing. Important aspects of CS-US associations are believed to occur within the LAd, however relatively little is known about the temporal behavior of local LAd networks. Information about the CS and US enters the LA via a rapid and direct thalamic input and a longer latency cortical path...
Resumo:
Using cameras onboard a robot for detecting a coloured stationary target outdoors is a difficult task. Apart from the complexity of separating the target from the background scenery over different ranges, there are also the inconsistencies with direct and reflected illumination from the sun,clouds, moving and stationary objects. They can vary both the illumination on the target and its colour as perceived by the camera. In this paper, we analyse the effect of environment conditions, range to target, camera settings and image processing on the reported colours of various targets. The analysis indicates the colour space and camera configuration that provide the most consistent colour values over varying environment conditions and ranges. This information is used to develop a detection system that provides range and bearing to detected targets. The system is evaluated over various lighting conditions from bright sunlight, shadows and overcast days and demonstrates robust performance. The accuracy of the system is compared against a laser beacon detector with preliminary results indicating it to be a valuable asset for long-range coloured target detection.