1000 resultados para GAAS-ALAS SUPERLATTICES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy barrier at InAs/GaAs interface due to the built-in strain in self-organized system has been determined experimentally. Such a barrier has been predicted by previous theories. From the deep-level transient spectroscopy (DLTS) measurements, we have obtained the electron and hole energy levels of quantum dots E-e(QD-->GaAs) = 0.13 eV and E-h(QD-->GaAs) = 0.09 eV relative to the bulk unstrained GaAs band edges E-c and E-v. DLTS measurements have also provided evidence to the existence of the capture barriers of quantum dots for electron E-eB = 0.30 eV and hole E-hB = 0.26 eV. The barriers can be explained by the apexes appearing in the interface between InAs and GaAs caused by strain. Combining the photoluminescence results, the band structures of InAs and GaAs have been determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface photovoltage (SPV) effect induced by the defect states in semi-insulating (SI) GaAs was studied. The PV response below the band edge was measured at room temperature with a de optical biasing. The spectra were found to be strongly dependent on the surface recombination and were attributed to formation of the carrier concentration gradient near the surface region, showing that SPV is a very sensitive and nondestructive technique for characterizing the surface quality of the SI-GaAs wafers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the electronic structures of the inhomogeneous quantum dots within the framework of the effective mass theory. The results show that the energies of electron and hole states depend sensitively on the relative magnitude 77 of the core radius to the capped quantum dot radius. The spatial distribution of the electrons and holes vary significantly when the ratio eta changes. A quantum-confinement-driven type-II-type-I transition is found in GaAs/AlxGa1-xAs-capped quantum dot structures. The phase diagram is obtained for different capped quantum dot radii. The ground-state exciton binding energy shows a highly nonlinear dependence on the innner structures of inhomogeneous quantum dots, which originates from the redistribution of the electron and hole wave functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we report the optical and microscopic properties of self-organized InAs/GaAs quantum dots grown by molecular beam epitaxy on (1 0 0) oriented GaAs substrates. A distinctive double-peak feature of the PL spectra from quantum dots has been observed, and a bimodal distribution of dot sizes has also been confirmed by scanning tunneling microscopy (STM) image for uncapped sample. The power-dependent photoluminescence (PL) study demonstrates that the distinctive PL emission peaks are associated with the ground-state emission of islands in different size branches. The temperature-dependent PL study shows that the PL quenching temperature for different dot families is different. It is shown that the coupling between quantum dots plays a key role in unusual temperature dependence of QD photoluminescence. In addition, we have tuned the emission wavelength of InAs QDs to 1.3 mu m at room temperature. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple model is presented to discuss the effect of As precipitates on the Fermi level in GaAs grown by molecular-beam epitaxy at low temperature (LT-GaAs). This model implements the compensation between point defects and the depletion of arsenic precipitates. The condition that the Fermi level is pinned by As precipitates is attained. The shifts of the Fermi level in LT-GaAs with annealing temperature are explained by our model. Additionally, the role of As precipitates in conventional semi-insulating GaAs is discussed. (C) 2000 American Institute of Physics. [S0021-8979(00)09905-9].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After capping InAs islands with a thin enough GaAs layer, growth interruption has been introduced. Ejected energy of self-organized InAs/GaAs quantum dots has been successfully tuned in a controlled manner by changing the thickness of GaAs capping layer and the time of growth interruption and InAs layer thickness. The photoluminescence (PL) spectra showing the shift of the peak position reveals the tuning of the electronic states of the QD system. Enhanced uniformity of Quantum dots is observed judging from the decrease of full width at half maximum of FL. Injection InAs/GaAs quantum dot lasers have been fabricated and performed on various frequencies. (C) 2000 Published by Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the growth of GaN buffers by metalorganic chemical vapor deposition (MOCVD) on GaAs (100) substrates. Atomic force microscope (AFM) and reflection high-energy electron diffraction (RHEED) were employed to study the dependence of the nucleation on the growth temperature, growth rate, annealing effect, and growth time. A two-step growth sequence must be used to optimize and control the nucleation and the subsequent growth independently. The size and distribution of islands and the thickness of buffer layers have a crucial role on the quality of GaN layers. Based on the experimental results, a model was given to interpret the formation of hexagonal-phase GaN in the cubic-phase GaN layers. Using an optimum buffer layer, the strong near-band emission of cubic GaN with full-width at half maximum (FWHM) value as small as 5.6 nm was observed at room temperature. The background carrier concentration was estimated to be in the range of 10(13) similar to 10(14) cm(-3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of room-temperature optical transitions in a Mg-doped cubic GaN epilayer grown on GaAs(100) by metalorganic chemical vapor deposition has been investigated. By examining the dependence of photoluminescence on the excitation intensity (which varied over four orders) at room temperature, four different emissions with different origins were identified. A blue emission at similar to 3.037 eV was associated with a shallow Mg acceptor, while three different lower-energy emissions at similar to 2.895, similar to 2.716, and similar to 2.639 eV were associated with a deep Mg complex. In addition to a shallow acceptor at E congruent to 0.213 eV, three Mg-related deep defect levels were also found at around 215, 374, and 570 meV (from the conduction band). (C) 2000 American Institute of Physics. [S0021-8979(00)01904-6].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A deep level transient spectroscopy technique has been used to determine the emission activation energies and capture barriers for electrons and holes in InAs self-assembled quantum dots embedded in GaAs. The ground electron and hole energies relative to their respective energy band edges of GaAs are 0.13 and 0.09 eV. Measurements show that the capture cross section of quantum dots is thermally activated. The capture barrier of quantum dots for electrons and holes are 0.30 and 0.26 eV, respectively. The results fit well with the results of photoluminescence spectroscopy measurements. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Postgrowth rapid thermal annealing was used to study the relaxation mechanism and optical properties of InGaAs/GaAs self-assembled quantum dots superlattice grown by molecular beam epitaxy. It is found that a significant narrowing of the luminescence linewidth (from 80 to 42 meV) occurs together with about 86 meV blue shift at annealing temperature up to 950 degrees C. Double crystal X-ray diffraction measurements show that the intensity of the satellite diffraction peak, which corresponds to the quantum dots superlattice, decreased with the increasing annealing temperature and disappeared at 750 degrees C, but recovered and increased again at higher annealing temperatures. This behavior can be explained by two competing relaxation mechanisms; interdiffusion and favored migration. The study indicates that a suitable annealing treatment can improve the structural properties of the quantum dots superlattice. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural properties of Semi-insulating gallium arsenide (SI-GaAs) crystal grown with power-travelling technique in space have been studied by double-crystal x-ray diffractometry and chemical etching. The quality of the crystal was first evaluated by x-ray rocking-curve method. The full width at half maximum of x-ray rocking curve in space-grown SI-GaAs is 9.4+/-0.08 are seconds. The average density of dislocations revealed by molten KOH is 2.0 X 10(4) cm(-2), and the highest density is 3.1 X 10(4) cm(-2). The stoichiometry in the single crystal grown in space is improved as well. Unfortunately, the rear of the ingot grown in space is polycrystalline owing to being out of control of power. (C) 1999 COSPAR. Published by Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InxGa1-xAs self-organized quantum dots with x=1.0, 0.5, and 0.35 have been grown by molecular beam epitaxy. The areal density, distribution, and shapes have been found to be dependent on x. The dot shape changes from a round shape for x=1.0 to an elliptical shape for x less than or equal to 0.5. The major axis and minor axis of the elliptical InxGa1-xAs dots are along the [(1) over bar 10] and [110] directions, respectively. The ordering phenomenon is also discussed. It is suggested that the dot-dot interaction may play important roles in the self-organization process. (C) 2000 American Institute of Physics. [S0021-8979(00)10701-7].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the photovoltaic effect in cubic GaN on GaAs at room temperature. The photovoltaic spectra of cubic GaN epitaxial film were concealed by the photovoltaic effect from the GaAs substrate unless additional illumination of a 632.8 nm He-Ne laser beam was used to remove the interference of the GaAs absorption in the measurement. On the basis of the near-band-edge photovoltaic spectra of cubic GaN, we obtained the minority carrier diffusion lengths of about 0.32 and 0.14 mu m for two undoped n-type cubic GaN samples with background concentrations of 10(14) and 10(18) cm(-3), respectively. (C) 1999 American Institute of Physics. [S0003-6951(99)00450-7].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photovoltaic spectral features and the behaviors of photocurrent versus the electrode potential for near surface In0.15Ga0.85As/GaAs quantum well electrodes have been investigated in nonaqueous solutions of ferrocene and acetylferrocene. The photovoltaic spectrum shows a sharp structure that reflects confined state-to-state exciton transition in the quantum well. Deep dips are observed in the photocurrent versus the electrode potential curves in both electrolytes at the different electrode potentials under the illumination of exciton resonance wavelength. These dips are qualitatively explained by considering the interfacial tunneling transfer of photogenerated electron within the quantum well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deposition of InxGa1-xAs (0.2 less than or equal to x less than or equal to 0.5) on (311)B GaAs surfaces using solid source molecular beam epitaxy (MBE) has been studied. Both AFM and photoluminescence emission showed that homogeneous quantum dots could be formed on (311)B GaAs surface when indium composition was around 0.4. Indium composition had a strong influence on the size uniformity and the lateral alignment of quantum dots. Compared with other surface orientation, (100) and (n11) A/B (n=1,2,3), photoluminescence measurement confirmed that (311)B surface is the most advantageous in fabricating uniform and dense quantum dots.