918 resultados para G520 Systems Design Methodologies
Resumo:
Production of antimicrobial peptides in plants constitutes an approach for obtaining them in high amounts. However, their heterologous expression in a practical and efficient manner demands some structural requirements such as a minimum size, the incorporation of retention signals to assure their accumulation in specific tissues, and the presence of protease cleavage amino acids and of target sequences to facilitate peptide detection. Since any sequence modification may influence the biological activity, peptides that will be obtained from the expression must be screened prior to the synthesis of the genes for plant transformation. We report herein a strategy for the modification of the antimicrobial undecapeptide BP100 that allowed the identification of analogues that can be expressed in plants and exhibit optimum biological properties. We prepared 40 analogues obtained by incorporating repeated units of the antimicrobial undecapeptide, fragments of natural peptides, one or two AGPA hinges, a Gly or Ser residue at the N-terminus, and a KDEL fragment and/or the epitope tag54 at the C-terminus. Their antimicrobial, hemolytic and phytotoxic activities, and protease susceptibility were evaluated. Best sequences contained a magainin fragment linked to the antimicrobial undecapeptide through an AGPA hinge. Moreover, since the presence of a KDEL unit or of tag54 did not influence significantly the biological activity, these moieties can be introduced when designing compounds to be retained in the endoplasmic reticulum and detected using a complementary epitope. These findings may contribute to the design of peptides to be expressed in plants
Resumo:
We show how certain N-dimensional dynamical systems are able to exploit the full instability capabilities of their fixed points to do Hopf bifurcations and how such a behavior produces complex time evolutions based on the nonlinear combination of the oscillation modes that emerged from these bifurcations. For really different oscillation frequencies, the evolutions describe robust wave form structures, usually periodic, in which selfsimilarity with respect to both the time scale and system dimension is clearly appreciated. For closer frequencies, the evolution signals usually appear irregular but are still based on the repetition of complex wave form structures. The study is developed by considering vector fields with a scalar-valued nonlinear function of a single variable that is a linear combination of the N dynamical variables. In this case, the linear stability analysis can be used to design N-dimensional systems in which the fixed points of a saddle-node pair experience up to N21 Hopf bifurcations with preselected oscillation frequencies. The secondary processes occurring in the phase region where the variety of limit cycles appear may be rather complex and difficult to characterize, but they produce the nonlinear mixing of oscillation modes with relatively generic features
Resumo:
The proposal to work on this final project came after several discussions held with Dr. Elzbieta Malinowski Gadja, who in 2008 published the book entitled Advanced Data Warehouse Design: From Conventional to Spatial and Temporal Applications (Data-Centric Systems and Applications). The project was carried out under the technical supervision of Dr. Malinowski and the direct beneficiary was the University of Costa Rica (UCR) where Dr. Malinowski is a professor at the Department of Computer Science and Informatics. The purpose of this project was twofold: First, to translate chapter III of said book with the intention of generating educational material for the use of the UCR and, second, to venture in the field of technical translation related to data warehouse. For the first component, the goal was to generate a final product that would eventually serve as an educational tool for the post-graduate courses of the UCR. For the second component, this project allowed me to acquire new skills and put into practice techniques that have helped me not only to perfom better in my current job as an Assistant Translator of the Inter-American BAnk (IDB), but also to use them in similar projects. The process was lenggthy and required torough research and constant communication with the author. The investigation focused on the search of terms and definitions to prepare the glossary, which was the basis to start the translation project. The translation process itself was carried out by phases, so that comments and corrections by the author could be taken into account in subsequent stages. Later, based on the glossary and the translated text, illustrations had been created in the Visio software were translated. In addition to the technical revision by the author, professor Carme Mangiron was in charge of revising the non-technical text. The result was a high-quality document that is currently used as reference and study material by the Department of Computer Science and Informatics of Costa Rica.
Resumo:
The design methods and languages targeted to modern System-on-Chip designs are facing tremendous pressure of the ever-increasing complexity, power, and speed requirements. To estimate any of these three metrics, there is a trade-off between accuracy and abstraction level of detail in which a system under design is analyzed. The more detailed the description, the more accurate the simulation will be, but, on the other hand, the more time consuming it will be. Moreover, a designer wants to make decisions as early as possible in the design flow to avoid costly design backtracking. To answer the challenges posed upon System-on-chip designs, this thesis introduces a formal, power aware framework, its development methods, and methods to constraint and analyze power consumption of the system under design. This thesis discusses on power analysis of synchronous and asynchronous systems not forgetting the communication aspects of these systems. The presented framework is built upon the Timed Action System formalism, which offer an environment to analyze and constraint the functional and temporal behavior of the system at high abstraction level. Furthermore, due to the complexity of System-on-Chip designs, the possibility to abstract unnecessary implementation details at higher abstraction levels is an essential part of the introduced design framework. With the encapsulation and abstraction techniques incorporated with the procedure based communication allows a designer to use the presented power aware framework in modeling these large scale systems. The introduced techniques also enable one to subdivide the development of communication and computation into own tasks. This property is taken into account in the power analysis part as well. Furthermore, the presented framework is developed in a way that it can be used throughout the design project. In other words, a designer is able to model and analyze systems from an abstract specification down to an implementable specification.
Resumo:
The RPC Detector Control System (RCS) is the main subject of this PhD work. The project, involving the Lappeenranta University of Technology, the Warsaw University and INFN of Naples, is aimed to integrate the different subsystems for the RPC detector and its trigger chain in order to develop a common framework to control and monitoring the different parts. In this project, I have been strongly involved during the last three years on the hardware and software development, construction and commissioning as main responsible and coordinator. The CMS Resistive Plate Chambers (RPC) system consists of 912 double-gap chambers at its start-up in middle of 2008. A continuous control and monitoring of the detector, the trigger and all the ancillary sub-systems (high voltages, low voltages, environmental, gas, and cooling), is required to achieve the operational stability and reliability of a so large and complex detector and trigger system. Role of the RPC Detector Control System is to monitor the detector conditions and performance, control and monitor all subsystems related to RPC and their electronics and store all the information in a dedicated database, called Condition DB. Therefore the RPC DCS system has to assure the safe and correct operation of the sub-detectors during all CMS life time (more than 10 year), detect abnormal and harmful situations and take protective and automatic actions to minimize consequential damages. The analysis of the requirements and project challenges, the architecture design and its development as well as the calibration and commissioning phases represent themain tasks of the work developed for this PhD thesis. Different technologies, middleware and solutions has been studied and adopted in the design and development of the different components and a big challenging consisted in the integration of these different parts each other and in the general CMS control system and data acquisition framework. Therefore, the RCS installation and commissioning phase as well as its performance and the first results, obtained during the last three years CMS cosmic runs, will be
Resumo:
B2B document handling is moving from paper to electronic networks and electronic domain very rapidly. Moving, handling and transforming large electronic business documents requires a lot from the systems handling them. This paper explores new technologies such as SOA, event-driven systems and ESB and a scalable, event-driven enterprise service bus is created to demonstrate these new approaches to message handling. As an end result, we have a small but fully functional messaging system with several different components. This is the first larger Java-project done in-house, so on the side we developed our own set of best practices of Java development, setting up configurations, tools, code repositories and class naming and much more.
Resumo:
We live in an era defined by a wealth of open and readily available information, and the accelerated evolution of social, mobile and creative technologies. The provision of knowledge, once a primary role of educators, is now devolved to an immense web of free and readily accessible sources. Consequently, educators need to redefine their role not just ¿from sage on the stage to guide on the side¿ but, as more and more voices insist, as ¿designers for learning¿.The call for such a repositioning of educators is heard from leaders in the field of technology-enhanced learning (TEL) and resonates well with the growing culture of design-based research in Education. However, it is still struggling to find a foothold in educational practice. We contend that the root causes of this discrepancy are the lack of articulation of design practices and methods, along with a shortage of tools and representations to support such practices, a lack of a culture of teacher-as-designer among practitioners, and insufficient theoretical development.The Art and Science of Learning Design (ASLD) explores the frameworks, methods, and tools available for teachers, technologists and researchers interested in designing for learning Learning Design theories arising from findings of research are explored, drawing upon research and practitioner experiences. It then surveys current trends in the practices, methods, and methodologies of Learning Design. Highlighting the translation of theory into practice, this book showcases some of the latest tools that support the learning design process itself.
Resumo:
Rising population, rapid urbanisation and growing industrialisation have severely stressed water quality and its availability in Malawi. In addition, financial and institutional problems and the expanding agro industry have aggravated this problem. The situation is worsened by depleting water resources and pollution from untreated sewage and industrial effluent. The increasing scarcity of clean water calls for the need for appropriate management of available water resources. There is also demand for a training system for conceptual design and evaluation for wastewater treatment in order to build the capacity for technical service providers and environmental practitioners in the country. It is predicted that Malawi will face a water stress situation by 2025. In the city of Blantyre, this situation is aggravated by the serious pollution threat from the grossly inadequate sewage treatment capacity. This capacity is only 23.5% of the wastewater being generated presently. In addition, limited or non-existent industrial effluent treatment has contributed to the severe water quality degradation. This situation poses a threat to the ecologically fragile and sensitive receiving water courses within the city. This water is used for domestic purposes further downstream. This manuscript outlines the legal and policy framework for wastewater treatment in Malawi. The manuscript also evaluates the existing wastewater treatment systems in Blantyre. This evaluation aims at determining if the effluent levels at the municipal plants conform to existing standards and guidelines and other associated policy and regulatory frameworks. The raw material at all the three municipal plants is sewage. The typical wastewater parameters are Biochemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), and Total Suspended Solids (TSS). The treatment target is BOD5, COD, and TSS reduction. Typical wastewater parameters at the wastewater treatment plant at MDW&S textile and garments factory are BOD5 and COD. The treatment target is to reduce BOD5 and COD. The manuscript further evaluates a design approach of the three municipal wastewater treatment plants in the city and the wastewater treatment plant at Mapeto David Whitehead & Sons (MDW&S) textile and garments factory. This evaluation utilises case-based design and case-based reasoning principles in the ED-WAVE tool to determine if there is potential for the tool in Blantyre. The manuscript finally evaluates the technology selection process for appropriate wastewater treatment systems for the city of Blantyre. The criteria for selection of appropriate wastewater treatment systems are discussed. Decision support tools and the decision tree making process for technology selection are also discussed. Based on the treatment targets and design criteria at the eight cases evaluated in this manuscript in reference to similar cases in the ED-WAVE tool, this work confirms the practical use of case-based design and case-based reasoning principles in the ED-WAVE tool in the design and evaluation of wastewater treatment 6 systems in sub-Sahara Africa, using Blantyre, Malawi, as the case study area. After encountering a new situation, already collected decision scenarios (cases) are invoked and modified in order to arrive at a particular design alternative. What is necessary, however, is to appropriately modify the case arrived at through the Case Study Manager in order to come up with a design appropriate to the local situation taking into account technical, socio-economic and environmental aspects. This work provides a training system for conceptual design and evaluation for wastewater treatment.
Resumo:
One of the targets of the climate and energy package of the European Union is to increase the energy efficiency in order to achieve a 20 percent reduction in primary energy use compared with the projected level by 2020. The energy efficiency can be improved for example by increasing the rotational speed of large electrical drives, because this enables the elimination of gearboxes leading to a compact design with lower losses. The rotational speeds of traditional bearings, such as roller bearings, are limited by mechanical friction. Active magnetic bearings (AMBs), on the other hand, allow very high rotational speeds. Consequently, their use in large medium- and high-speed machines has rapidly increased. An active magnetic bearing rotor system is an inherently unstable, nonlinear multiple-input, multiple-output system. Model-based controller design of AMBs requires an accurate system model. Finite element modeling (FEM) together with the experimental modal analysis provides a very accurate model for the rotor, and a linearized model of the magneticactuators has proven to work well in normal conditions. However, the overall system may suffer from unmodeled dynamics, such as dynamics of foundation or shrink fits. This dynamics can be modeled by system identification. System identification can also be used for on-line diagnostics. In this study, broadband excitation signals are adopted to the identification of an active magnetic bearing rotor system. The broadband excitation enables faster frequency response function measurements when compared with the widely used stepped sine and swept sine excitations. Different broadband excitations are reviewed, and the random phase multisine excitation is chosen for further study. The measurement times using the multisine excitation and the stepped sine excitation are compared. An excitation signal design with an analysis of the harmonics produced by the nonlinear system is presented. The suitability of different frequency response function estimators for an AMB rotor system are also compared. Additionally, analytical modeling of an AMB rotor system, obtaining a parametric model from the nonparametric frequency response functions, and model updating are discussed in brief, as they are key elements in the modeling for a control design. Theoretical methods are tested with a laboratory test rig. The results conclude that an appropriately designed random phase multisine excitation is suitable for the identification of AMB rotor systems.
Resumo:
The development of new methodologies and tools that enable to determine the water content in soil is of fundamental importance to the practice of irrigation. The objective of this study was to evaluate soil matric potential using mercury tensiometer and puncture digital tensiometer, and to compare the gravimetric soil moisture values obtained by tensiometric system with gravimetric soil moisture obtained by neutron attenuation technique. Four experimental plots were maintained with different soil moisture by irrigation. Three repetitions of each type of tensiometer were installed at 0.20 m depth. Based on the soil matric potential and the soil water retention curve, the corresponding gravimetric soil moisture was determined. The data was then compared to those obtained by neutron attenuation technique. The results showed that both tensiometric methods showed no difference under soil matric potential higher than -40 kPa. However, under drier soil, when the water was replaced by irrigation, the soil matric potential of the puncture digital tensiometer was less than those of the mercury tensiometer.
Resumo:
The rural electrification is characterized by geographical dispersion of the population, low consumption, high investment by consumers and high cost. Moreover, solar radiation constitutes an inexhaustible source of energy and in its conversion into electricity photovoltaic panels are used. In this study, equations were adjusted to field conditions presented by the manufacturer for current and power of small photovoltaic systems. The mathematical analysis was performed on the photovoltaic rural system I-100 from ISOFOTON, with power 300 Wp, located at the Experimental Farm Lageado of FCA/UNESP. For the development of such equations, the circuitry of photovoltaic cells has been studied to apply iterative numerical methods for the determination of electrical parameters and possible errors in the appropriate equations in the literature to reality. Therefore, a simulation of a photovoltaic panel was proposed through mathematical equations that were adjusted according to the data of local radiation. The results have presented equations that provide real answers to the user and may assist in the design of these systems, once calculated that the maximum power limit ensures a supply of energy generated. This real sizing helps establishing the possible applications of solar energy to the rural producer and informing the real possibilities of generating electricity from the sun.
Resumo:
The evaluation of technologies employed at the agricultural production system such as crop rotation and soil preparation, both associated with crop-livestock integration, is crucial. Therefore, the aim of the present study was to evaluate the incorporation of lime for three no-tillage systems and cultural managements in system of crop-livestock integration, with emphasis on corn grain yield. The experiment was conducted from January 2003 to April 2005 at Selvíria city, MS, in Dystroferric Red Latosol, clay texture. The experimental design was randomized blocks with split plots consisted of three main treatments, aimed the soil physics conditioning and the incorporation of lime: PD - No-no-tillage; CM - minimum no-tillage, and PC - conventional no-tillage; and of two secondary treatments related to the management: rotation and crop succession, with four replications. Data on agronomic traits of maize were analyzed: plant height, stem diameter, height of the first spike insertion, 100 grains weight and grain yield. The results showed that the maize produced under the system of crop-livestock integration is quite feasible, showing that grain yields are comparable to averages in the region and the different soil physical conditioning and incorporation of lime did not influence the corn yield as well as the cultural managements, rotation and succession, did not affect the maize crop behavior after two years of cultivation.
Resumo:
The objective of this study was to evaluate the use of subsoiling, gypsum and organic matter associated with the cultivation of cotton, sunflower and cowpea in crop rotation, seeking the reclamation and use of a saline-sodic soil. The treatments were arranged in a randomized block design in split plots with four replications, during two crop cycles (2009/2010 and 2010/2011). The plots were formed by the treatments: T1. Subsoiling (S); T2. S + 20 Mg ha-1 of gypsum; T3. S + 40 Mg ha-1 of organic matter; T4. S + 10 Mg ha-1 of gypsum + 20 Mg ha-1 of organic matter; T5. S + 20 Mg ha-1 of gypsum + 40 Mg ha-1 of organic matter and the sub-plots consisted of the cotton-cowpea (C/CP) and sunflower-cowpea (S/CP) crop rotation. The use of gypsum and organic matter contributed to decrease the soil salinity and sodicity. Cotton was not affected by the treatments, while the sunflower crop was favored by the application of amendments only in the second production cycle. Higher yields of cowpea in T5 treatment, during the 2009/2010 cycle, are indicative that higher doses of gypsum and organic matter applied in this treatment accelerate the reclamation process. For other treatments with amendment application there was a beneficial effect for this crop only in the second cycle, when the values of productivity were similar to T5.
Resumo:
ABSTRACT Tractor traveling speed can influence the quality of spraying depending on the application technology used. This study aimed to evaluate the droplet spectrum, the deposition and uniformity of spray distribution with different spraying systems and traveling speeds of a self-propelled sprayer in two phenological stages of the cotton plant (B9 and F13). The experimental design was randomized blocks and treatments were three spraying techniques: common flat spray tips; tilted flat jet with air induction, at 120 L ha-1; and rotary atomizer disk, 20 L ha-1, combined with four traveling speeds: 12, 15, 18 and 25 km h-1, with four replications. Spraying deposition was evaluated for both leaf surfaces from the cotton plant apex and base (stage B9) and middle part of the plant (stage F13) with a cupric marker. A laser particle analyzer also assessed the droplet spectrum. The centrifugal power spray system produces more homogeneous droplet spectrum and increased penetration of droplets into the canopy in both phenological stages. Variation on the operating conditions necessary for increased traveling speed negatively influences the pattern of spraying deposits.
Resumo:
Pulsed electroacoustic (PEA) method is a commonly used non-destructive technique for investigating space charges. It has been developed since early 1980s. These days there is continuing interest for better understanding of the influence of space charge on the reliability of solid electrical insulation under high electric field. The PEA method is widely used for space charge profiling for its robust and relatively inexpensive features. The PEA technique relies on a voltage impulse used to temporarily disturb the space charge equilibrium in a dielectric. The acoustic wave is generated by charge movement in the sample and detected by means of a piezoelectric film. The spatial distribution of the space charge is contained within the detected signal. The principle of such a system is already well established, and several kinds of setups have been constructed for different measurement needs. This thesis presents the design of a PEA measurement system as a systems engineering project. The operating principle and some recent developments are summarised. The steps of electrical and mechanical design of the instrument are discussed. A common procedure for measuring space charges is explained and applied to verify the functionality of the system. The measurement system is provided as an additional basic research tool for the Corporate Research Centre of ABB (China) Ltd. It can be used to characterise flat samples with thickness of 0.2–0.5 mm under DC stress. The spatial resolution of the measurement is 20 μm.