990 resultados para G-Graph
Resumo:
A graph is singular if the zero eigenvalue is in the spectrum of its 0-1 adjacency matrix A. If an eigenvector belonging to the zero eigenspace of A has no zero entries, then the singular graph is said to be a core graph. A ( k,t)-regular set is a subset of the vertices inducing a k -regular subgraph such that every vertex not in the subset has t neighbours in it. We consider the case when k=t which relates to the eigenvalue zero under certain conditions. We show that if a regular graph has a ( k,k )-regular set, then it is a core graph. By considering the walk matrix we develop an algorithm to extract ( k,k )-regular sets and formulate a necessary and sufficient condition for a graph to be Hamiltonian.
Resumo:
Taking a Fiedler’s result on the spectrum of a matrix formed from two symmetric matrices as a motivation, a more general result is deduced and applied to the determination of adjacency and Laplacian spectra of graphs obtained by a generalized join graph operation on families of graphs (regular in the case of adjacency spectra and arbitrary in the case of Laplacian spectra). Some additional consequences are explored, namely regarding the largest eigenvalue and algebraic connectivity.
Resumo:
Let G be a finite graph with an eigenvalue μ of multiplicity m. A set X of m vertices in G is called a star set for μ in G if μ is not an eigenvalue of the star complement G\X which is the subgraph of G induced by vertices not in X. A vertex subset of a graph is (k ,t)-regular if it induces a k -regular subgraph and every vertex not in the subset has t neighbors in it. We investigate the graphs having a (k,t)-regular set which induces a star complement for some eigenvalue. A survey of known results is provided and new properties for these graphs are deduced. Several particular graphs where these properties stand out are presented as examples.
Resumo:
Let p(G)p(G) and q(G)q(G) be the number of pendant vertices and quasi-pendant vertices of a simple undirected graph G, respectively. Let m_L±(G)(1) be the multiplicity of 1 as eigenvalue of a matrix which can be either the Laplacian or the signless Laplacian of a graph G. A result due to I. Faria states that mL±(G)(1) is bounded below by p(G)−q(G). Let r(G) be the number of internal vertices of G. If r(G)=q(G), following a unified approach we prove that mL±(G)(1)=p(G)−q(G). If r(G)>q(G) then we determine the equality mL±(G)(1)=p(G)−q(G)+mN±(1), where mN±(1) denotes the multiplicity of 1 as eigenvalue of a matrix N±. This matrix is obtained from either the Laplacian or signless Laplacian matrix of the subgraph induced by the internal vertices which are non-quasi-pendant vertices. Furthermore, conditions for 1 to be an eigenvalue of a principal submatrix are deduced and applied to some families of graphs.
Resumo:
This speech by Mr. Memminger offers resolutions on the issue of rechartering the bank of the state of South Carolina. The issues presented are the Bank of the State is founded on an erroneous policy, unwise for a state to engage in banking, not practical to recharter the Bank of the State and a special committee of each house should be appointed to advise how to carry out these resolutions at the next session.
Resumo:
This document contains the facts and arguments in favor of the bill, which he was prevented from presenting before the House of Representatives at the last session of the legislature.
Resumo:
Tese de doutoramento, Ciências e Tecnologias da Saúde (Microbiologia), Universidade de Lisboa, Faculdade de Medicina, 2014