999 resultados para Fulminant Hepatic-failure
Resumo:
Massive hepatectomy associated with infection induces liver dysfunction, or even multiple organ failure and death. Glycyrrhizin has been shown to exhibit anti-oxidant and anti-inflammatory activities. The aim of the present study was to investigate whether glycyrrhizin could attenuate endotoxin-induced acute liver injury after partial hepatectomy. Male Wistar rats (6 to 8 weeks old, weighing 200-250 g) were randomly assigned to three groups of 24 rats each: sham, saline and glycyrrhizin. Rats were injected intravenously with lipopolysaccharide (LPS) 24 h after 70% hepatectomy. Glycyrrhizin, pre-administered three times with 24 h intervals 48 h before hepatectomy, prolonged the survival of rats submitted to partial hepatectomy and LPS injection, compared with saline controls. Glycyrrhizin was shown to attenuate histological hepatic changes and significantly reduced serum levels of aspartate aminotransferase, alanine aminotransferase, and lactic dehydrogenase, at all the indicated times (6 rats from each were sacrificed 1, 3, 6, and 9 h after LPS injection), compared with saline controls. Glycyrrhizin also significantly inhibited hepatocyte apoptosis by down-regulating the expression of caspase-3 and inhibiting the release of cytochrome C from mitochondria into the cytoplasm. The anti-inflammatory activity of glycyrrhizin may rely on the inhibition of release of tumor necrosis factor-a, myeloperoxidase activity, and translocation of nuclear factor-kappa B into the nuclei. Glycyrrhizin also up-regulated the expression of proliferating cell nuclear antigen, implying that it might be able to promote regeneration of livers harmed by LPS. In summary, glycyrrhizin may represent a potent drug protecting the liver against endotoxin-induced injury, especially after massive hepatectomy.
Resumo:
Some studies have suggested that human immunodeficiency virus (HIV) infection modifies the natural history of hepatitis C virus (HCV) infection, accelerating the progression of fibrosis and the development of cirrhosis. Our objective was to evaluate the fibrosis progression rate (FPR) in HCV/HIV-co-infected patients, and to identify factors that may influence it. HCV-mono-infected and HCV/HIV-co-infected patients with a known date of HCV infection (transfusion or injection drug use) and a liver biopsy were included. The FPR was defined as the ratio between the fibrosis stage (Metavir score) and the estimated length of infection in years and the result was reported as fibrosis units per year. The factors studied were gender, age at infection, consumption of alcohol, aminotransferase levels, histological activity grade, HCV genotype and viral load, CD4 cell count, HIV viral load, and the use of antiretroviral therapy. Sixty-five HCV-infected (group 1) and 53 HCV/HIV-co-infected (group 2) patients were evaluated over a period of 19 months. The mean FPR of groups 1 and 2 was 0.086 ± 0.074 and 0.109 ± 0.098 fibrosis units per year, respectively (P = 0.276). There was a correlation between length of HCV infection and stage of fibrosis in both groups. The age at infection, the aspartate aminotransferase level (r = 0.36) and the inflammatory activity grade were correlated with the FPR (P < 0.001). No difference in FPR was found between HCV-mono-infected and HCV/HIV-co-infected patients.
Resumo:
Renal ischemia-reperfusion (IR) injury is the major cause of acute renal failure in native and transplanted kidneys. Mononuclear leukocytes have been reported in renal tissue as part of the innate and adaptive responses triggered by IR. We investigated the participation of CD4+ T lymphocytes in the pathogenesis of renal IR injury. Male mice (C57BL/6, 8 to 12 weeks old) were submitted to 45 min of ischemia by renal pedicle clamping followed by reperfusion. We evaluated the role of CD4+ T cells using a monoclonal depleting antibody against CD4 (GK1.5, 50 µ, ip), and class II-major histocompatibility complex molecule knockout mice. Both CD4-depleted groups showed a marked improvement in renal function compared to the ischemic group, despite the fact that GK1.5 mAb treatment promoted a profound CD4 depletion (to less than 5% compared to normal controls) only within the first 24 h after IR. CD4-depleted groups presented a significant improvement in 5-day survival (84 vs 80 vs 39%; antibody treated, knockout mice and non-depleted groups, respectively) and also a significant reduction in the tubular necrosis area with an early tubular regeneration pattern. The peak of CD4-positive cell infiltration occurred on day 2, coinciding with the high expression of ßC mRNA and increased urea levels. CD4 depletion did not alter the CD11b infiltrate or the IFN-g and granzyme-B mRNA expression in renal tissue. These data indicate that a CD4+ subset of T lymphocytes may be implicated as key mediators of very early inflammatory responses after renal IR injury and that targeting CD4+ T lymphocytes may yield novel therapies.
Resumo:
Pregnancy loss can be caused by several factors involved in human reproduction. Although up to 50% of cases remain unexplained, it has been postulated that the major cause of failed pregnancy is an error of embryo implantation. Transmembrane mucin-1 (MUC-1) is a glycoprotein expressed on the endometrial cell surface which acts as a barrier to implantation. The gene that codes for this molecule is composed of a polymorphic tandem repeat of 60 nucleotides. Our objective was to determine if MUC-1 genetic polymorphism is associated with implantation failure in patients with a history of recurrent abortion. The study was conducted on 10 women aged 25 to 35 years with no history of successful pregnancy and with a diagnosis of infertility. The control group consisted of 32 patients aged 25 to 35 years who had delivered at least two full-term live children and who had no history of abortions or fetal losses. MUC-1 amplicons were obtained by PCR and observed on agarose and polyacrylamide gel after electrophoresis. Statistical analysis showed no significant difference in the number of MUC-1 variable number of tandem repeats between these groups (P > 0.05). Our results suggest that there is no effect of the polymorphic MUC-1 sequence on the implantation failure. However, the data do not exclude MUC-1 relevance during embryo implantation. The process is related to several associated factors such as the mechanisms of gene expression in the uterus, specific MUC-1 post-translational modifications and appropriate interactions with other molecules during embryo implantation.
Resumo:
We investigated whether hepatic artery endothelium may be the earliest site of injury consequent to liver ischemia and reperfusion. Twenty-four heartworm-free mongrel dogs of either sex exposed to liver ischemia/reperfusion in vivo were randomized into four experimental groups (N = 6): a) control, sham-operated dogs, b) dogs subjected to 60 min of ischemia, c) dogs subjected to 30 min of ischemia and 60 min of reperfusion, and d) animals subjected to 45 min of ischemia and 120 min of reperfusion. The nitric oxide endothelium-dependent relaxation of hepatic artery rings contracted with prostaglandin F2a and exposed to increasing concentrations of acetylcholine, calcium ionophore A23187, sodium fluoride, phospholipase-C, poly-L-arginine, isoproterenol, and sodium nitroprusside was evaluated in organ-chamber experiments. Lipid peroxidation was estimated by malondialdehyde activity in liver tissue samples and by blood lactic dehydrogenase (LDH), serum aspartate aminotransferase (AST) and serum alanine aminotransferase (ALT) activities. No changes were observed in hepatic artery relaxation for any agonist tested. The group subjected to 45 min of ischemia and 120 min of reperfusion presented marked increases of serum aminotransferases (ALT = 2989 ± 1056 U/L and AST = 1268 ± 371 U/L; P < 0.01), LDH = 2887 ± 1213 IU/L; P < 0.01) and malondialdehyde in liver samples (0.360 ± 0.020 nmol/mgPT; P < 0.05). Under the experimental conditions utilized, no abnormal changes in hepatic arterial vasoreactivity were observed: endothelium-dependent and independent hepatic artery vasodilation were not impaired in this canine model of ischemia/reperfusion injury. In contrast to other vital organs and in the ischemia/reperfusion injury environment, dysfunction of the main artery endothelium is not the first site of reperfusion injury.
Resumo:
We investigated the relationship between sleep-disordered breathing (SDB) and Cheyne-Stokes respiration (CSR) while awake as well as mortality. Eighty-nine consecutive outpatients (29 females) with congestive heart failure (CHF; left ventricular ejection fraction, LVEF <45%) were prospectively evaluated. The presence of SDB and of CSR while awake before sleep onset was investigated by polysomnography. SDB prevalence was 81 and 56%, using apnea-hypopnea index cutoffs >5 and >15, respectively. CHF etiologies were similar according to the prevalence of SDB and sleep pattern. Males and females were similar in age, body mass index, and LVEF. Males presented more SDB (P = 0.01), higher apnea-hypopnea index (P = 0.04), more light sleep (stages 1 and 2; P < 0.05), and less deep sleep (P < 0.001) than females. During follow-up (25 ± 10 months), 27% of the population died. Non-survivors had lower LVEF (P = 0.01), worse New York Heart Association (NYHA) functional classification (P = 0.03), and higher CSR while awake (P < 0.001) than survivors. As determined by Cox proportional model, NYHA class IV (RR = 3.95, 95%CI = 1.37-11.38, P = 0.011) and CSR while awake with a marginal significance (RR = 2.96, 95%CI = 0.94-9.33, P = 0.064) were associated with mortality. In conclusion, the prevalence of SDB and sleep pattern of patients with Chagas' disease were similar to that of patients with CHF due to other etiologies. Males presented more frequent and more severe SDB and worse sleep quality than females. The presence of CSR while awake, but not during sleep, may be associated with a poor prognosis in patients with CHF.
Resumo:
Apoptotic protease activating factor 1 (APAF-1) has a critical role in the regulation of apoptosis. In the present study, the mRNA expression analysis of different APAF-1 transcripts (APAF-1S, APAF-1LC, APAF-1LN, and APAF-1XL) was analyzed in bone marrow samples from 37 patients with acute myeloid leukemia (newly diagnosed, with no previous treatment). APAF-1XL and APAF-1LN transcripts (with and without an extra WD-40 repeat region, respectively) were detected in all samples, although the major form expressed was APAF-1XL in 65% of the samples (group 1), while 35% of the samples expressed primarily APAF-1LN (group 2). Only 46% of the patients presented complete remission in response to remission induction therapy (represented by less than 5% marrow blasts and hematological recovery), all but 2 cases being from group 1, 21.6% did not attain complete remission (only 1 case from group 1), and 32.4% of the patients died early. Lower expression of APAF-1XL (APAF-1XL/APAF-1LN ratio <1.2) was associated with a poor response to therapy (P = 0.0005, Fisher exact test). Both groups showed similar characteristics regarding white blood cell counts, cytogenetic data or presence of gene rearrangements associated with good prognosis as AML1-ETO, CBFB-MYH11 and PML/RARA. Since it has been shown that only the isoforms with the extra WD-40 repeat region activate procaspase-9, we suggest that low procaspase-9 activation may also be involved in the deregulation of apoptosis and chemotherapy resistance in acute myeloid leukemia.
Resumo:
The present investigation was undertaken to study the effect of β-blockers and exercise training on cardiac structure and function, respectively, as well as overall functional capacity in a genetic model of sympathetic hyperactivity-induced heart failure in mice (α2A/α2CArKO). α2A/α2CArKO and their wild-type controls were studied for 2 months, from 3 to 5 months of age. Mice were randomly assigned to control (N = 45), carvedilol-treated (N = 29) or exercise-trained (N = 33) groups. Eight weeks of carvedilol treatment (38 mg/kg per day by gavage) or exercise training (swimming sessions of 60 min, 5 days/week) were performed. Exercise capacity was estimated using a graded treadmill protocol and HR was measured by tail cuff. Fractional shortening was evaluated by echocardiography. Cardiac structure and gastrocnemius capillary density were evaluated by light microscopy. At 3 months of age, no significant difference in fractional shortening or exercise capacity was observed between wild-type and α2A/α2CArKO mice. At 5 months of age, all α2A/α2CArKO mice displayed exercise intolerance and baseline tachycardia associated with reduced fractional shortening and gastrocnemius capillary rarefaction. In addition, α2A/ α2CArKO mice presented cardiac myocyte hypertrophy and ventricular fibrosis. Exercise training and carvedilol similarly improved fractional shortening in α2A/α2CArKO mice. The effect of exercise training was mainly associated with improved exercise tolerance and increased gastrocnemius capillary density while β-blocker therapy reduced cardiac myocyte dimension and ventricular collagen to wild-type control levels. Taken together, these data provide direct evidence for the respective beneficial effects of exercise training and carvedilol in α2A/α2CArKO mice preventing cardiac dysfunction. The different mechanisms associated with beneficial effects of exercise training and carvedilol suggest future studies associating both therapies.
Resumo:
Focal adhesion kinase (FAK) is a broadly expressed tyrosine kinase implicated in cellular functions such as migration, growth and survival. Emerging data support a role for FAK in cardiac development, reactive hypertrophy and failure. Data reviewed here indicate that FAK plays a critical role at the cellular level in the responses of cardiomyocytes and cardiac fibroblasts to biomechanical stress and to hypertrophic agonists such as angiotensin II and endothelin. The signaling mechanisms regulated by FAK are discussed to provide insight into its role in the pathophysiology of cardiac hypertrophy and failure.
Resumo:
It has been demonstrated that there is an association between serum lipoproteins and survival rate in patients with ischemic cardiomyopathy, as well as in patients with non-ischemic causes of heart failure. We tested the hypothesis of an association between serum lipoprotein levels and prognosis in a cohort of outpatients with heart failure, including Chagas' heart disease. The lipid profile of 833 outpatients with heart failure in functional classes III and IV of the New York Heart Association, with a mean age of 46.9 ± 10.6 years, 655 (78.6%) men and 178 (21.4%) women, was studied from April 1991 to June 2003. The survival rate was estimated by the Kaplan-Meyer's method and the Cox proportional hazards models. Etiology of heart failure was ischemic cardiomyopathy in 171 (21%) patients, Chagas' heart disease in 144 (17%), hypertensive cardiomyopathy in 136 (16%), and other etiologies in 83 (10%). In 299 (36%) patients, heart failure was ascribed to idiopathic dilated cardiomyopathy. Variables significantly associated with mortality were age (hazard ratio, HR = 1.02; 95%CI = 1.01-1.03; P = 0.0074), male gender (HR = 1.77; 95%CI = 1.2-2.62; P = 0.004), idiopathic dilated cardiomyopathy (HR = 1.81; 95%CI = 1.16-2.82; P = 0.0085), serum triglycerides (HR = 0.97; 95%CI = 0.96-0.98; P < 0.0001), and HDL cholesterol (HR = 0.99; 95%CI = 0.99-1.0; P = 0.0280). Therefore, higher serum HDL cholesterol and higher serum triglycerides were associated with lower mortality in this cohort of outpatients with heart failure.
Resumo:
The regular assessment of Brazilian scientific output means that individual university departments need to constantly improve the quantity and quality of their scientific output. A significant proportion of this output involves the work of Master’s and Doctoral students, but getting this work published in a suitable journal can often prove to be a challenge. Although students’ lack of fluency in English is a contributing factor, many of the problems observed have an early origin in the formulation of the research problem and its relevance to current research trends in the international literature. In short, more time needs to be spent in the library and less in the laboratory, and more effort needs to be made in teaching students basic research skills such as the effective use of bibliographic databases like PubMed, Web of Science and Scopus.
Resumo:
A study was undertaken to investigate the effect of administering praziquantel (PZQ), focusing on the liver stereological findings of malnourished mice infected with Schistosoma mansoni. Thirty female Swiss Webster mice (age: 21 days; weight: 8-14 g) were fed either a low-protein diet (8%) or standard chow (22% protein) for 15 days. Five mice in each group were infected with 50 cercariae each of the BH strain (Brazil). PZQ therapy (80 mg/kg body weight, per day) was started on the 50th day of infection and consisted of daily administration for 5 days. Volume density (hepatocytes, sinusoids and hepatic fibrosis) was determined by stereology using a light microscope. Body weight gain and total serum albumin levels were always lower in undernourished mice. Our stereological study demonstrated that treatment increased both volume density of hepatocytes in mice fed standard chow (47.56%, treated group and 12.06%, control) and low-protein chow (30.98%, treated group and 21.44%, control), and hepatic sinusoids [standard chow (12.52%, treated group and 9.06%, control), low-protein chow (14.42%, treated group and 8.46%, control)], while hepatic fibrosis was reduced [standard chow (39.92%, treated group and 78.88%, control) and low-protein chow (54.60%, treated group and 70.10%, control)]. On the other hand, mice fed low-protein chow decreased density volume of hepatocytes and hepatic fibrosis. In conclusion, our findings indicate that treatment with PZQ ameliorates hepatic schistosomiasis pathology even in mice fed a low-protein diet.
Resumo:
Anesthetics can affect the structure and biological function of tissues and systems differentially. The aim of the present study was to compare three injectable anesthetics generally used in experiments with animals in terms of the degree of hemolysis and glycogenolysis occurring after profound anesthesia. Twenty-four male Wistar rats (330-440 g) were divided into three groups (N = 8): chloral hydrate (CH), ketamine + xylazine (KX), Zoletil 50® (zolazepam and tiletamine) + xylazine (ZTX). After deep anesthesia, total blood was collected. The liver and white (WG) and red gastrocnemius (RG) muscles were also immediately removed. The degree of serum hemolysis was quantified on the basis of hemoglobin concentration (g/L). Hepatic and muscular glycogen concentrations (mmol/kg wet tissue) were quantified by the phenol-sulfuric method. The CH and KX groups exhibited serum hemolysis (4.0 ± 2.2 and 1.9 ± 0.9 g/L, respectively; P < 0.05) compared to the ZTX group, which presented none. Only KX induced elevated glycogenolysis (mmol/kg wet tissue) in the liver (86.9 ± 63.2) and in WG (18.7 ± 9.0) and RG (15.2 ± 7.2; P < 0.05). The CH and ZTX groups exhibited no glycogenolysis in the liver (164.4 ± 41.1 and 176.8 ± 54.4, respectively), WG (28.8 ± 4.4, 32.0 ± 6.5, respectively) or RG (29.0 ± 4.9; 25.3 ± 8.6, respectively). Our data indicate that ZTX seems to be an appropriate general anesthetic for studies that seek to simultaneously quantify the concentration of glycogen and serum biochemical markers without interferences. ZTX is reasonably priced, found easily at veterinary markets, quickly induces deep anesthesia, and presents a low mortality rate.
Resumo:
Acute renal failure (ARF) is a frequent complication of Gram-negative sepsis, with a high risk of mortality. Lipopolysaccharide (LPS)-induced ARF is associated with hemodynamic changes that are strongly influenced by the overproduction of nitric oxide (NO) through the cytokine-mediated up-regulation of inducible NO synthase. LPS-induced reductions in systemic vascular resistance paradoxically culminate in renal vasoconstriction. Collagen XVIII is an important component of the extracellular matrix expressed in basement membranes. Its degradation by matrix metalloproteases, cathepsins and elastases results in the formation of endostatin, claimed to have antiangiogenic activity and to be a prominent vasorelaxing agent. We evaluated the expression of endostatin/collagen XVIII in an endotoxemic ARF model. ARF was induced in C57BL/6 mice by intraperitoneal injection of LPS (10 mg/kg) followed by sacrifice 4 and 12 h later. Kidney tissue was the source of RNA and protein and the subject of histological analysis. As early as 4 h after LPS administration, blood urea, creatinine and NO levels were significantly increased compared to control. Endostatin/collagen XVIII mRNA levels were 0.71 times lower than sham-inoculated mice 4 h after LPS inoculation, returning to normal levels 12 h after LPS inoculation. Immunohistological examination revealed that acute injury caused by LPS leads to an increase of endostatin basement membrane staining in association with the decrease of CD31 endothelial basement membrane staining. These results indicate that in the early phase of endotoxemic ARF the endostatin levels were not regulated by gene expression, but by the metabolism of collagen XVIII.
Resumo:
This study was designed to investigate the effect of curcumin (diferuloylmethane) on the proliferation and apoptosis of hepatic stellate cells (HSC). The cell line HSC-T6 (1.25 x 10(5) cells/mL) was incubated with curcumin and HSC proliferation was detected by a methyl thiazolyl tetrazolium colorimetric assay. HSC apoptosis was detected by flow cytometry, transmission electron microscope and agarose gel electrophoresis. HSC proliferation was significantly inhibited in a concentration-dependent manner (10.6 to 63.5%) after incubation with 20-100 μM curcumin, compared with a control group. At 20, 40, and 60 μM, after 24 h of incubation, curcumin was associated with a significant increase in the number of HSC in the G2/M phase, and a significant decrease in cell numbers in the S phase (P < 0.05). At these concentrations, curcumin was also associated with an increase in the apoptosis index of 15.3 ± 1.9, 26.7 ± 2.8, and 37.6 ± 4.4%, respectively, compared to control (1.9 ± 0.6%, P < 0.01). At 40 μM, the curcumin-induced apoptosis index at 12, 24, 36, and 48 h of incubation was 12.0 ± 2.4, 26.7 ± 3.5, 33.8 ± 1.8, and 49.3 ± 1.6%, respectively (P < 0.01). In conclusion, curcumin inhibits the in vitro proliferation of HSCs in the G2/M phase of the cell cycle and also induces apoptosis in a concentration- and time-dependent manner. The in vivo effect of curcumin on HSCs requires further investigation.