999 resultados para Fuel regulating devices.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We quantify the conditions that might trigger wide spread adoption of alternative fuel vehicles (AFVs) to support energy policy. Empirical review shows that early adopters are heterogeneous motivated by financial benefits, environmental appeal, new technology, and vehicle reliability. A probabilistic Monte Carlo simulation model is used to assess consumer heterogeneity for early and mass market adopters. For early adopters full battery electric vehicles (BEVs) are competitive but unable to surpass diesels or hybrids due to purchase price premium and lack of charging availability. For mass adoption, simulations indicate that if the purchase price premium of a BEV closes to within 20% of an in-class internal combustion engine (ICE) vehicle, combined with a 60% increase in refuelling availability relative to the incumbent system, BEVs become competitive. But this depends on a mass market that values the fuel economy and CO2 reduction benefits associated with BEVs. We also find that the largest influence on early adoption is financial benefit rather than pro-environmental behaviour suggesting that AFVs should be marketed by appealing to economic benefits combined with pro-environmental behaviour to motivate adoption. Monte Carlo simulations combined with scenarios can give insight into diffusion dynamics for other energy demand-side technologies. © 2012 Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This book presents physics-based models of bipolar power semiconductor devices and their implementation in MATLAB and Simulink. The devices are subdivided into different regions, and the operation in each region, along with the interactions at the interfaces which are analyzed using basic semiconductor physics equations that govern their behavior. The Fourier series solution is used to solve the ambipolar diffusion equation in the lightly doped drift region of the devices. In addition to the external electrical characteristics, internal physical and electrical information, such as the junction voltages and the carrier distribution in different regions of the device, can be obtained using the models. Table of Contents: Introduction to Power Semiconductor Device Modeling/Physics of Power Semiconductor Devices/Modeling of a Power Diode and IGBT/IGBT Under an Inductive Load-Switching Condition in Simulink/Parameter Extraction. © 2013 by Morgan & Claypool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A one-dimensional model for crevice HC post-flame oxidation is used to calculate and understand the effect of operating parameters and fuel type (propane and isooctane) on the extent of crevice hydrocarbon and the product distribution in the post flame environment. The calculations show that the main parameters controlling oxidation are: bulk burned gas temperatures, wall temperatures, turbulent diffusivity, and fuel oxidation rates. Calculated extents of oxidation agree well with experimental values, and the sensitivities to operating conditions (wall temperatures, equivalence ratio, fuel type) are reasonably well captured. Whereas the bulk gas temperatures largely determine the extent of oxidation, the hydrocarbon product distribution is not very much affected by the burned gas temperatures, but mostly by diffusion rates. Uncertainties in both turbulent diffusion rates as well as in mechanisms are an important factor limiting the predictive capabilities of the model. However, it seems well suited to sensitivity calculations about a baseline. Copyright © 1999 Society of Automotive Engineers, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of liquid fuel inside the engine cylinder is believed to be a strong contributor to the high levels of hydrocarbon emissions from spark ignition (SI) engines during the warm-up period. Quantifying and determining the fate of the liquid fuel that enters the cylinder is the first step in understanding the process of emissions formation. This work uses planar laser induced fluorescence (PLIF) to visualize the liquid fuel present in the cylinder. The fluorescing compounds in indolene, and mixtures of iso-octane with dopants of different boiling points (acetone and 3-pentanone) were used to trace the behavior of different volatility components. Images were taken of three different planes through the engine intersecting the intake valve region. A closed valve fuel injection strategy was used, as this is the strategy most commonly used in practice. Background subtraction and masking were both performed to reduce the effect of any spurious fluorescence. The images were analyzed on both a time and crank angle (CA) basis, showing the time of maximum liquid fuel present in the cylinder and the effect of engine events on the inflow of liquid fuel. The results show details of the liquid fuel distribution as it enters the engine as a function of crankangle degree, volatility and location in the cylinder. A. semi-quantitative analysis based on the integration of the image intensities provides additional information on the temporal distribution of the liquid fuel flow. © 1998 Society of Automotive Engineers, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A technique has been developed to measure the desorption and subsequent oxidation of fuel in the oil layer by spiking the oil with liquid fuel and firing the engine on gaseous fuel or motoring with air. Experiments suggest that fuel desorption is not diffusion limited above 50°C and indicated that approximately two to four percent of the cylinder oil layer is fresh oil from the sump. The increase in hydrocarbon emissions is of the order of 100 ppmC1 per 1% liquid fuel introduced into the fresh oil in a methane fired engine at mid-speed and light load conditions. Calculations indicate that fuel desorbing from oil is much more likely to produce hydrocarbon emissions than fuel emerging from crevices. © Copyright 1994 Society of Automotive Engineers, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several options of fuel assembly design are investigated for a BWR core operating in a closed self-sustainable Th-233U fuel cycle. The designs rely on an axially heterogeneous fuel assembly structure consisting of a single axial fissile zone "sandwiched" between two fertile blanket zones, in order to improve fertile to fissile conversion ratio. The main objective of the study was to identify the most promising assembly design parameters, dimensions of fissile and fertile zones, for achieving net breeding of 233U. The design challenge, in this respect, is that the fuel breeding potential is at odds with axial power peaking and the core minimum critical power ratio (CPR), hence limiting the maximum achievable core power rating. Calculations were performed with the BGCore system, which consists of the MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly having reflective radial boundaries was modeled applying simplified restrictions on the maximum centerline fuel temperature and the CPR. It was found that axially heterogeneous fuel assembly design with a single fissile zone can potentially achieve net breeding, while matching conventional BWR core power rating under certain restrictions to the core loading pattern design. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we investigate a number of fuel assembly design options for a BWR core operating in a closed self-sustainable Th-233U fuel cycle. The designs rely on axially heterogeneous fuel assembly structure in order to improve fertile to fissile conversion ratio. One of the main assumptions of the current study was to restrict the fuel assembly geometry to a single axial fissile zone "sandwiched" between two fertile blanket zones. The main objective was to study the effect of the most important design parameters, such as dimensions of fissile and fertile zones and average void fraction, on the net breeding of 233U. The main design challenge in this respect is that the fuel breeding potential is at odds with axial power peaking and therefore limits the maximum achievable core power rating. The calculations were performed with BGCore system, which consists of MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly with reflective radial boundaries was modeled applying simplified restrictions on maximum central line fuel temperature and Critical Power Ratio. It was found that axially heterogeneous fuel assembly design with single fissile zone can potentially achieve net breeding. In this case however, the achievable core power density is roughly one third of the reference BWR core.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on fuel design optimization of a PWR operating in a self sustainable Th-233U fuel cycle. Monte Carlo simulated annealing method was used in order to identify the fuel assembly configuration with the most attractive breeding performance. In previous studies, it was shown that breeding may be achieved by employing heterogeneous Seed-Blanket fuel geometry. The arrangement of seed and blanket pins within the assemblies may be determined by varying the designed parameters based on basic reactor physics phenomena which affect breeding. However, the amount of free parameters may still prove to be prohibitively large in order to systematically explore the design space for optimal solution. Therefore, the Monte Carlo annealing algorithm for neutronic optimization is applied in order to identify the most favorable design. The objective of simulated annealing optimization is to find a set of design parameters, which maximizes some given performance function (such as relative period of net breeding) under specified constraints (such as fuel cycle length). The first objective of the study was to demonstrate that the simulated annealing optimization algorithm will lead to the same fuel pins arrangement as was obtained in the previous studies which used only basic physics phenomena as guidance for optimization. In the second part of this work, the simulated annealing method was used to optimize fuel pins arrangement in much larger fuel assembly, where the basic physics intuition does not yield clearly optimal configuration. The simulated annealing method was found to be very efficient in selecting the optimal design in both cases. In the future, this method will be used for optimization of fuel assembly design with larger number of free parameters in order to determine the most favorable trade-off between the breeding performance and core average power density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on an investigation into fuel design choices of a pressurized water reactor operating in a self-sustainable Th- 233U fuel cycle. In order to evaluate feasibility of this concept, two types of fuel assembly lattices were considered: square and hexagonal. The hexagonal lattice may offer some advantages over the square one. For example, the fertile blanket fuel can be packed more tightly reducing the blanket volume fraction in the core and potentially allowing to achieve higher core average power density. The calculations were carried out with Monte-Carlo based BGCore code system and the results were compared to those obtained with Serpent Monte-Carlo code and deterministic transport code BOXER. One of the major design challenges associated with the SB concept is high power peaking due to the high concentration of fissile material in the seed region. The second objective of this work is to estimate the maximum achievable core power density by evaluation of limiting thermal hydraulic parameters. The analysis showed that both fuel assembly designs have a potential of achieving net breeding. Although hexagonal lattice was found to be somewhat more favorable because it allows achieving higher power density, while having breeding performance comparable to the square lattice case. © Carl Hanser Verlag München.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, a new numerical benchmark exercise for High Temperature Gas Cooled Reactor (HTGR) fuel depletion was defined. The purpose of this benchmark is to provide a comparison basis for different codes and methods applied to the burnup analysis of HTGRs. The benchmark specifications include three different models: (1) an infinite lattice of tristructural isotropic (TRISO) fuel particles, (2) an infinite lattice of fuel pebbles, and (3) a prismatic fuel including fuel and coolant channels. In this paper, we present the results of the third stage of the benchmark obtained with MCNP based depletion code BGCore and deterministic lattice code HELIOS 1.9. The depletion calculations were performed for three-dimensional model of prismatic fuel with explicitly described TRISO particles as well as for two-dimensional model, in which double heterogeneity of the TRISO particles was eliminated using reactivity equivalent physical transformation (RPT). Generally, good agreement in the results of the calculations obtained using different methods and codes was observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we reported the results of the first stage of HTGR fuel element depletion benchmark obtained with BGCore and HELIOS depletion codes. The results of the k-inf are generally in good agreement. However, significant deviation in concentrations of several nuclides between MCNP based and HELIOS codes was observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study explores the basic possibility of achieving a self-sustainable Th-U233 fuel cycle that can be adopted in the current generation of Pressurized Water Reactors. This study outlines some fuel design strategies to achieve (or to approach as closely as possible) a sustainable fuel cycle. Major design tradeoffs in the core design are discussed. Preliminary neutronic analysis performed on the fuel assembly level with BOXER computer code suggests that net breeding of U233 is feasible in principle within a typical PWR operating envelope. However, some reduction in the core power density and/or shorter than typical fuel cycle length would most likely be required in order to achieve such performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four fast reactor concepts using lead (LFR), liquid salt, NaCl-KCl-MgCl2 (LSFR), sodium (SFR), and supercritical CO2 (GFR) coolants are compared. Since economy of scale and power conversion system compactness are the same by virtue of the consistent 2400 MWt rating and use of the S-CO2 power conversion system, the achievable plant thermal efficiency, core power density and core specific powers become the dominant factors. The potential to achieve the highest efficiency among the four reactor concepts can be ranked from highest to lowest as follows: (1) GFR, (2) LFR and LSFR, and (3) SFR. Both the lead- and salt-cooled designs achieve about 30% higher power density than the gas-cooled reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor. Fuel cycle costs are favored for the sodium reactor by virtue of its high specific power of 65 kW/kgHM compared to the lead, salt and gas reactor values of 45, 35, and 21 kW/kgHM, respectively. In terms of safety, all concepts can be designed to accommodate the unprotected limiting accidents through passive means in a self-controllable manner. However, it does not seem to be a preferable option for the GFR where the active or semi-passive approach will likely result in a more economic and reliable plant. Lead coolant with its superior neutronic characteristics and the smallest coolant temperature reactivity coefficient is easiest to design for self-controllability, while the LSFR requires special reactivity devices to overcome its large positive coolant temperature coefficient. The GFR required a special core design using BeO diluent and a supercritical CO2 reflector to achieve negative coolant void worth-one of the conditions necessary for inherent shutdown following large LOCA. Protected accidents need to be given special attention in the LSFR and LFR due to the small margin to freezing of their coolants, and to a lesser extent in the SFR. © 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growing interest in innovative reactors and advanced fuel cycle designs requires more accurate prediction of various transuranic actinide concentrations during irradiation or following discharge because of their effect on reactivity or spent-fuel emissions, such as gamma and neutron activity and decay heat. In this respect, many of the important actinides originate from the 241Am(n,γ) reaction, which leads to either the ground or the metastable state of 242Am. The branching ratio for this reaction depends on the incident neutron energy and has very large uncertainty in the current evaluated nuclear data files. This study examines the effect of accounting for the energy dependence of the 241Am(n,γ) reaction branching ratio calculated from different evaluated data files for different reactor and fuel types on the reactivity and concentrations of some important actinides. The results of the study confirm that the uncertainty in knowing the 241Am(n,γ) reaction branching ratio has a negligible effect on the characteristics of conventional light water reactor fuel. However, in advanced reactors with large loadings of actinides in general, and 241Am in particular, the branching ratio data calculated from the different data files may lead to significant differences in the prediction of the fuel criticality and isotopic composition. Moreover, it was found that neutron energy spectrum weighting of the branching ratio in each analyzed case is particularly important and may result in up to a factor of 2 difference in the branching ratio value. Currently, most of the neutronic codes have a single branching ratio value in their data libraries, which is sometimes difficult or impossible to update in accordance with the neutron spectrum shape for the analyzed system.