904 resultados para Formation of the historian
Resumo:
The paper analyses the emergence of group-specific attitudes and beliefs about tax compliance when individuals interact in a social network. It develops a model in which taxpayers possess a range of individual characteristics – including attitude to risk, potential for success in self-employment, and the weight attached to the social custom for honesty – and make an occupational choice based on these characteristics. Occupations differ in the possibility for evading tax. The social network determines which taxpayers are linked, and information about auditing and compliance is transmitted at meetings between linked taxpayers. Using agent-based simulations, the analysis demonstrates how attitudes and beliefs endogenously emerge that differ across sub-groups of the population. Compliance behaviour is different across occupational groups, and this is reinforced by the development of group-specific attitudes and beliefs. Taxpayers self-select into occupations according to the degree of risk aversion, the subjective probability of audit is sustained above the objective probability, and the weight attached to the social custom differs across occupations. These factors combine to lead to compliance levels that differ across occupations.
Resumo:
Acrylamide is formed from reducing sugars and asparagine during the preparation of French fries. The commercial preparation of French fries is a multistage process involving the preparation of frozen, par-fried potato strips for distribution to catering outlets, where they are finish-fried. The initial blanching, treatment in glucose solution, and par-frying steps are crucial because they determine the levels of precursors present at the beginning of the finish-frying process. To minimize the quantities of acrylamide in cooked fries, it is important to understand the impact of each stage on the formation of acrylamide. Acrylamide, amino acids, sugars, moisture, fat, and color were monitored at time intervals during the frying of potato strips that had been dipped in various concentrations of glucose and fructose during a typical pretreatment. A mathematical model based on the fundamental chemical reaction pathways of the finish-frying was developed, incorporating moisture and temperature gradients in the fries. This showed the contribution of both glucose and fructose to the generation of acrylamide and accurately predicted the acrylamide content of the final fries.
Resumo:
In the biomimetic design two hydrophobic pentapetides Boc-Ile-Aib-Leu-Phe-Ala-OMe ( I) and Boc-Gly-Ile-Aib-Leu-Phe-OMe (II) (Aib: alpha-aminoisobutyric acid) containing one Aib each are found to undergo solvent assisted self-assembly in methanol/water to form vesicular structures, which can be disrupted by simple addition of acid. The nanovesicles are found to encapsulate dye molecules that can be released by the addition of acid as confirmed by fluorescence microscopy and UV studies. The influence of solvent polarity on the morphology of the materials generated from the peptides has been examined systematically, and shows that fibrillar structures are formed in less polar chloroform/petroleum ether mixture and vesicular structures are formed in more polar methanol/water. Single crystal X-ray diffraction studies reveal that while beta-sheet mediated self-assembly leads to the formation of fibrillar structures, the solvated beta-sheet structure leads to the formation of vesicular structures. The results demonstrate that even hydrophobic peptides can generate vesicular structures from polar solvent which may be employed in model studies of complex biological phenomena.
Resumo:
This article focuses on the characteristics of persistent thin single-layer mixed-phase clouds. We seek to answer two important questions: (i) how does ice continually nucleate and precipitate from these clouds, without the available ice nuclei becoming depleted? (ii) how do the supercooled liquid droplets persist in spite of the net flux of water vapour to the growing ice crystals? These questions are answered quantitatively using in situ and radar observations of a long-lived mixed-phase cloud layer over the Chilbolton Observatory. Doppler radar measurements show that the top 500 m of cloud (the top 250 m of which is mixed-phase, with ice virga beneath) is turbulent and well-mixed, and the liquid water content is adiabatic. This well-mixed layer is bounded above and below by stable layers. This inhibits entrainment of fresh ice nuclei into the cloud layer, yet our in situ and radar observations show that a steady flux of ≈100 m−2s−1 ice crystals fell from the cloud over the course of ∼1 day. Comparing this flux to the concentration of conventional ice nuclei expected to be present within the well-mixed layer, we find that these nuclei would be depleted within less than 1 h. We therefore argue that nucleation in these persistent supercooled clouds is strongly time-dependent in nature, with droplets freezing slowly over many hours, significantly longer than the few seconds residence time of an ice nucleus counter. Once nucleated, the ice crystals are observed to grow primarily by vapour deposition, because of the low liquid water path (21 g m−2) yet vapour-rich environment. Evidence for this comes from high differential reflectivity in the radar observations, and in situ imaging of the crystals. The flux of vapour from liquid to ice is quantified from in situ measurements, and we show that this modest flux (3.3 g m−2h−1) can be readily offset by slow radiative cooling of the layer to space.
Resumo:
The sea ice edge presents a region of many feedback processes between the atmosphere, ocean, and sea ice (Maslowski et al.). Here the authors focus on the impact of on-ice atmospheric and oceanic flows at the sea ice edge. Mesoscale jet formation due to the Coriolis effect is well understood over sharp changes in surface roughness such as coastlines (Hunt et al.). This sharp change in surface roughness is experienced by the atmosphere and ocean encountering a compacted sea ice edge. This paper presents a study of a dynamic sea ice edge responding to prescribed atmospheric and oceanic jet formation. An idealized analytical model of sea ice drift is developed and compared to a sea ice climate model [the Los Alamos Sea Ice Model (CICE)] run on an idealized domain. The response of the CICE model to jet formation is tested at various resolutions. It is found that the formation of atmospheric jets at the sea ice edge increases the wind speed parallel to the sea ice edge and results in the formation of a sea ice drift jet in agreement with an observed sea ice drift jet (Johannessen et al.). The increase in ice drift speed is dependent upon the angle between the ice edge and wind and results in up to a 40% increase in ice transport along the sea ice edge. The possibility of oceanic jet formation and the resultant effect upon the sea ice edge is less conclusive. Observations and climate model data of the polar oceans have been analyzed to show areas of likely atmospheric jet formation, with the Fram Strait being of particular interest.
Resumo:
BACKGROUND: Integrin-linked kinase (ILK) and its associated complex of proteins are involved in many cellular activation processes, including cell adhesion and integrin signaling. We have previously demonstrated that mice with induced platelet ILK deficiency show reduced platelet activation and aggregation, but only a minor bleeding defect. Here, we explore this apparent disparity between the cellular and hemostatic phenotypes. METHODS: The impact of ILK inhibition on integrin αII b β3 activation and degranulation was assessed with the ILK-specific inhibitor QLT0267, and a conditional ILK-deficient mouse model was used to assess the impact of ILK deficiency on in vivo platelet aggregation and thrombus formation. RESULTS: Inhibition of ILK reduced the rate of both fibrinogen binding and α-granule secretion, but was accompanied by only a moderate reduction in the maximum extent of platelet activation or aggregation in vitro. The reduction in the rate of fibrinogen binding occurred prior to degranulation or translocation of αII b β3 to the platelet surface. The change in the rate of platelet activation in the absence of functional ILK led to a reduction in platelet aggregation in vivo, but did not change the size of thrombi formed following laser injury of the cremaster arteriole wall in ILK-deficient mice. It did, however, result in a marked decrease in the stability of thrombi formed in ILK-deficient mice. CONCLUSION: Taken together, the findings of this study indicate that, although ILK is not essential for platelet activation, it plays a critical role in facilitating rapid platelet activation, which is essential for stable thrombus formation.
Resumo:
The i-motif structures are formed by oligonucleotides containing cytosine tracts under acidic conditions. The folding of the i-motif under physiological conditions is of great interest because of its biological role. In this study, we investigated the effect of the intra-strand cross-link on the stability of the i-motif structure. The 4-vinyl-substituted analog of thymidine (T-vinyl) was incorporated into the 5′-end of the human telomere complementary strand, which formed the intra-strand cross-link with the internal adenine. The intra-strand cross-linked i-motif displayed CD spectra similar to that of the natural i-motif at acidic pH, which was transformed into a random coil with the increasing pH. The pH midpoint for the transition from the i-motif to random coil increased from pH 6.1 for the natural one to pH 6.8 for the cross-linked one. The thermodynamic parameters were obtained by measuring the thermal melting behaviors by CD and UV, and it was determined that the intra-strand cross-linked i-motif is stabilized due to a favorable entropy effect. Thus, this study has clearly indicated the validity of the intra-strand cross-linking for stabilization of the i-motif structure.
Resumo:
We use both Granger-causality and instrumental variables (IV) methods to examine the impact of index fund positions on price returns for the main US grains and oilseed futures markets. Our analysis supports earlier conclusions that Granger-causal impacts are generally not discernible. However, market microstructure theory suggests trading impacts should be instantaneous. IV-based tests for contemporaneous causality provide stronger evidence of price impact. We find even stronger evidence that changes in index positions can help predict future changes in aggregate commodity price indices. This result suggests that changes in index investment are in part driven by information which predicts commodity price changes over the coming months.
Resumo:
Purpose – The purpose of this paper is to investigate to what extent one can apply experiential learning theory (ELT) to the public-private partnership (PPP) setting in Russia and to draw insights regarding the learning cycle ' s nature. Additionally, the paper assesses whether the PPP case confirms Kolb ' s ELT. Design/methodology/approach – The case study draws upon primary data which the authors collected by interviewing informants including a PPP operator ' s managers, lawyers from Russian law firms and an expert from the National PPP Centre. The authors accomplished data source triangulation in order to ensure a high degree of research validity. Findings – Experiential learning has resulted in a successful and a relatively fast PPP project launch without the concessionary framework. The lessons learned include the need for effective stakeholder engagement; avoiding being stuck in bureaucracy such as collaboration with Federal Ministries and anti-trust agency; avoiding application for government funding as the approval process is tangled and lengthy; attracting strategic private investors; shaping positive public perception of a PPP project; and making continuous efforts in order to effectively mitigate the public acceptance risk. Originality/value – The paper contributes to ELT by incorporating the impact of social environment in the learning model. Additionally, the paper tests the applicability of ELT to learning in the complex organisational setting, i.e., a PPP.
Resumo:
This paper examines a hydrographic response to the wind‐driven coastal polynya activity over the southeastern Laptev Sea shelf for April–May 2008, using a combination of Environmental Satellite (Envisat) advanced synthetic aperture radar (ASAR) and TerraSAR‐X satellite imagery, aerial photography, meteorological data, and SBE‐37 salinity‐temperature‐depth and acoustic Doppler current profiler land‐fast ice edgemoored instruments. When ASAR observed the strongest end‐of‐April polynya event with frazil ice formation, the moored instruments showed maximal acoustical scattering within the surface mixed layer, and the seawater temperatures were either at or 0.02°C below freezing. We also find evidence of the persistent horizontal temperature and salinity gradients across the fast ice edge to have the signature of geostrophic flow adjustment as predicted by polynya models.
Resumo:
Background: The aim of this study is to verify the regenerative potential of particulate anorganic bone matrix synthetic peptide-15 (ABM-P-15) in class III furcation defects associated or not with expanded polytetrafluoroethylene membranes. Methods: Class III furcation defects were produced in the mandibular premolars (P2, P3, and P4) of six dogs and filled with impression material. The membranes and the bone grafts were inserted into P3 and P4, which were randomized to form the test and control groups, respectively; P2 was the negative control group. The animals were sacrificed 3 months post-treatment. Results: Histologically, the complete closure of class III furcation defects was not observed in any of the groups. Partial periodontal regeneration with similar morphologic characteristics among the groups was observed, however, through the formation of new cementum, periodontal ligament, and bone above the notch. Histologic analysis showed granules from the bone graft surrounded by immature bone matrix and encircled by newly formed tissue in the test group. The new bone formation area found in the negative control group was 2.28 +/- 2.49 mm(2) and in the test group it was 6.52 +/- 5.69 mm(2), which showed statistically significant differences for these groups considering this parameter (Friedman test P <0.05). There was no statistically significant difference among the negative control, control, and test groups for the other parameters. Conclusions: The regenerative potential of ABM-P-15 was demonstrated through new bone formation circumscribing and above the graft particles. The new bone also was accompanied by the formation of new cementum and periodontal ligament fibers. J Periodontol 2010;81:594-603.
Resumo:
This paper reports a case in which a previous traumatic injury at the age of 2 and pulp necrosis to a primary incisor resulted in a rare injury to the permanent successor tooth. The radiographic examination at the age of 9 showed the arrest of root formation of the permanent maxillary right central incisor, which did not erupt. Tooth 11 was extracted and a functional removable space maintainer was prepared. At the age of 17, the patient received an anterior fixed prosthesis for re-establishment of the esthetics, phonetics and deglutition.
Resumo:
The processing of fish roe leads to changes in its chemical composition, the extent of which depends on the techniques and additives employed. This study aimed to investigate the effects of ripening temperature and the use of sodium benzoate and citric acid on the quality of ripened cod roe, with respect to the contents of volatile base nitrogen (VBN), trimethylamine (TMA), biogenic amines (BA) and on the lipid composition. In comparison with fresh roes, ripened roes presented higher contents of VBN, TMA, BA and the proportion of free fatty acids regardless of the temperature and additives used during the ripening process. The greatest increases were observed in the samples ripened at 17 degrees C without additives, in which histamine was detected at 8.8 mg/100 g. A low ripening temperature was the main factor responsible for minimising changes in the cod roe composition. The addition of sodium benzoate as a preservative or citric acid to decrease the pH value had a significant effect in maintaining the quality of the cod roes, mainly at high ripening temperature. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Eumenitin, a novel cationic antimicrobial peptide from the venom of solitary wasp Eumenes rubronotatus, was characterized by its effects on black lipid membranes of negatively charged (azolectin) and zwitterionic (1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) or DPhPC-cholesterol) phospholipids: surface potential changes, single-channel activity, ion selectivity, and pore size were studied. We found that eumenitin binds preferentially to charged lipid membranes as compared with zwitterionic ones. Eumenitin is able to form pores in azolectin (G(1) = 118.00 +/- 3.67 pS or G(2) = 160.00 +/- 7.07 pS) and DPhPC membranes (G = 61.13 +/- 7.57 pS). Moreover, cholesterol addition to zwitterionic DPhPC membranes inhibits pore formation activity but does not interfere with the binding of peptide. Open pores presented higher cation (K (+)) over anion (Cl-) selectivity. The pore diameter was estimated at between 8.5and 9.8 angstrom in azolectin membranes and about 4.3 angstrom in DPhPC membranes. The results are discussed based on the toroidal pore model for membrane pore-forming activity and ion selectivity. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Trypanosoma cruzi, the etiologic agent for Chagas` disease, has requirements for several cofactors, one of which is heme. Because this organism is unable to synthesize heme, which serves as a prosthetic group for several heme proteins (including the respiratory chain complexes), it therefore must be acquired from the environment. Considering this deficiency, it is an open question as to how heme A, the essential cofactor for eukaryotic CcO enzymes, is acquired by this parasite. In the present work, we provide evidence for the presence and functionality of genes coding for heme O and heme A synthases, which catalyze the synthesis of heme O and its conversion into heme A, respectively. The functions of these T. cruzi proteins were evaluated using yeast complementation assays, and the mRNA levels of their respective genes were analyzed at the different T. cruzi life stages. It was observed that the amount of mRNA coding for these proteins changes during the parasite life cycle, suggesting that this variation could reflect different respiratory requirements in the different parasite life stages.