999 resultados para Formation continue médecins de famille
Resumo:
The anaplastic lymphoma kinase (ALK) gene is overexpressed, mutated or amplified in most neuroblastoma (NB), a pediatric neural crest-derived embryonal tumor. The two most frequent mutations, ALK-F1174L and ALK-R1275Q, contribute to NB tumorigenesis in mouse models, and cooperate with MYCN in the oncogenic process. However, the precise role of activating ALK mutations or ALK-wt overexpression in NB tumor initiation needs further clarification. Human ALK-wt, ALK-F1174L, or ALK-R1275Q were stably expressed in murine neural crest progenitor cells (NCPC), MONC-1 or JoMa1, immortalized with v-Myc or Tamoxifen-inducible Myc-ERT, respectively. While orthotopic implantations of MONC- 1 parental cells in nude mice generated various tumor types, such as NB, osteo/ chondrosarcoma, and undifferentiated tumors, due to v-Myc oncogenic activity, MONC-1-ALK-F1174L cells only produced undifferentiated tumors. Furthermore, our data represent the first demonstration of ALK-wt transforming capacity, as ALK-wt expression in JoMa1 cells, likewise ALK-F1174L, or ALK-R1275Q, in absence of exogenous Myc-ERT activity, was sufficient to induce the formation of aggressive and undifferentiated neural crest cell-derived tumors, but not to drive NB development. Interestingly, JoMa1-ALK tumors and their derived cell lines upregulated Myc endogenous expression, resulting from ALK activation, and both ALK and Myc activities were necessary to confer tumorigenic properties on tumor-derived JoMa1 cells in vitro.
Resumo:
The mechanisms of blood vessel maturation into distinct parts of the blood vasculature such as arteries, veins, and capillaries have been the subject of intense investigation over recent years. In contrast, our knowledge of lymphatic vessel maturation is still fragmentary. In this study, we provide a molecular and morphological characterization of the major steps in the maturation of the primary lymphatic capillary plexus into collecting lymphatic vessels during development and show that forkhead transcription factor Foxc2 controls this process. We further identify transcription factor NFATc1 as a novel regulator of lymphatic development and describe a previously unsuspected link between NFATc1 and Foxc2 in the regulation of lymphatic maturation. We also provide a genome-wide map of FOXC2-binding sites in lymphatic endothelial cells, identify a novel consensus FOXC2 sequence, and show that NFATc1 physically interacts with FOXC2-binding enhancers. These data provide novel insights into the molecular program of lymphatic vascular specification and suggest that FOXC2 and NFATc1 are potential targets for therapeutic intervention.
Resumo:
One of the main negative anthropic effects on soil is the formation of crusts, resulting in soil degradation. This process of physical origin reduces soil water infiltration, causing increased runoff and consequently soil losses, water erosion and/or soil degradation. The study and monitoring of soil crusts is important for soil management and conservation, mainly in tropical regions where research is insufficient to explain how soil crusts are formed and how they evolve. The purpose of this study was to monitor these processes on soils with different particle size distributions. Soil crusts on a sandy/sandy loam Argissolo Vermelho-Amarelo (Typic Hapludult), sandy loam Latossolo Vermelho-Amarelo (Typic Hapludox) and a clayey Nitossolo Vermelho eutroférrico (Rhodic Kandiudalf) were monitored. The soil was sampled and data collected after 0, 3, 5 and 10 rain storms with intensities above 25 mm h-1, from December 2008 to May 2009. Soil chemical and particle size distribution analysis were performed. The changes caused by rainfall were monitored by determining the soil roughness, hydraulic conductivity and soil water retention curves and by micromorphological analysis. Reduced soil roughness and crust formation were observed for all soils during the monitored rainfall events. However, contrary to what was expected according to the literature, crust formation was not always accompanied by reductions in total porosity, hydraulic conductivity and soil water retention.
Resumo:
Quaternary prevention aims to protect the patient or population against overmedicalisation. Quaternary prevention influences all the activities of family medicine by questioning the utility of primary prevention and early diagnosis, identifying the risks of creating new pathological entities and practicing a maximalist medicine. Family doctors can support quaternary prevention by focusing on their patients' priorities and the local resources of an efficient health system.
Resumo:
We analyzed the initial adhesion and biofilm formation of Staphylococcus aureus (ATCC 29213) and S. epidermidis RP62A (ATCC 35984) on various bone grafts and bone graft substitutes under standardized in vitro conditions. In parallel, microcalorimetry was evaluated as a real-time microbiological assay in the investigation of biofilm formation and material science research. The materials beta-tricalcium phosphate (beta-TCP), processed human spongiosa (Tutoplast) and poly(methyl methacrylate) (PMMA) were investigated and compared with polyethylene (PE). Bacterial counts (log(10) cfu per sample) were highest on beta-TCP (S. aureus 7.67 +/- 0.17; S. epidermidis 8.14 +/- 0.05) while bacterial density (log(10) cfu per surface) was highest on PMMA (S. aureus 6.12 +/- 0.2, S. epidermidis 7.65 +/- 0.13). Detection time for S. aureus biofilms was shorter for the porous materials (beta-TCP and processed human spongiosa, p < 0.001) compared to the smooth materials (PMMA and PE), with no differences between beta-TCP and processed human spongiosa (p > 0.05) or PMMA and PE (p > 0.05). In contrast, for S. epidermidis biofilms the detection time was different (p < 0.001) between all materials except between processed human spongiosa and PE (p > 0.05). The quantitative analysis by quantitative culture after washing and sonication of the material demonstrated the importance of monitoring factors like specific surface or porosity of the test materials. Isothermal microcalorimetry proved to be a suitable tool for an accurate, non-invasive and real-time microbiological assay, allowing the detection of bacterial biomass without removing the biofilm from the surface.
Resumo:
The resources of our heath care system are limited. Choices in the attribution of resources are necessary to ensure its stability. A cost-effectiveness analysis compares the effects of one health intervention to another, taking into account the costs (including the saved costs) and the saved life years, adjusted for the quality of life (cost-utility). Cost-effectiveness analyses should take the societal perspective and the studied intervention should be compared to a relevant intervention actually in use. Physicians, at the interface between patients and payers, are in an ideal position to interpret, or even perform cost-effectiveness analysis, and to promote the interventions that are most effective and that have a reasonable cost.
Resumo:
The eye is a complex organ, which provides one of our most important senses, sight. The retina is the neuronal component of the eye and represents the connection with the central nervous system for the transmission of the information that leads to image processing. Retinitis pigmentosa (RP) is one of the most common forms of inherited retinal degeneration, in which the primary death of rods, resulting in night blindness, is always followed by the loss of cones, which leads to legal blindness. Clinical and genetic heterogeneity in retinitis pigmentosa is not only due to different mutations in different genes, but also to different effects of the same mutation in different individuals, sometimes even within the same family. My thesis work has been mainly focused on an autosomal dominant form of RP linked to mutations in the PRPF31 gene, which often shows reduced penetrance. Our study has led to the identification of the major regulator of the penetrance of PRPF31 mutations, the CNOT3 protein, and to the characterization of its mechanism of action. Following the same rationale of investigating molecular mechanisms that are responsible for clinical and genetic heterogeneity of retinitis pigmentosa, we studied a recessive form of the disease associated with mutations in the recently-identified gene FAMI61 A, where mutations in the same gene give rise to variable clinical manifestations. Our data have increased the knowledge of the relationship between genotype and phenotype in this form of the disease. Whole genome sequencing technique was also tested as a strategy for disease gene identification in unrelated patients with recessive retinitis pigmentosa and proved to be effective in identifying disease-causing variants that might have otherwise failed to be detected with other screening methods. Finally, for the first time we reported a choroidal tumor among the clinical manifestations of PTEN hamartoma tumor syndrome, a genetic disorder caused by germline mutations of the tumor suppressor gene PTEN. Our study has highlighted the heterogeneity of this choroidal tumor, showing that genetic and/or epigenetic alterations in different genes may contribute to the tumor development and growth. - L'oeil est un organe complexe, à l'origine d'un de nos sens les plus importants, la vue. La rétine est la composante neuronale de l'oeil qui constitue la connexion avec le système nerveux central pour la transmission de l'information et qui conduit à la formation des images. La rétinite pigmentaire (RP) est une des formes les plus courantes de dégénérescence rétinienne héréditaire, dans laquelle la mort primaire de bâtonnets, entraînant la cécité nocturne, est toujours suivie par la perte de cônes qui conduit à la cécité complète. L'hétérogénéité clinique et génétique dans la rétinite pigmentaire n'est pas seulement due aux différentes mutations dans des gènes différents, mais aussi à des effets différents de la même mutation chez des individus différents, parfois même dans la même famille. Mon travail de thèse s'est principalement axé sur une forme autosomique dominante de RP liée à des mutations dans le gène PRPF31, associées souvent à une pénétrance réduite, me conduisant à l'identification et à la caractérisation du mécanisme d'action du régulateur principal de la pénétrance des mutations: la protéine CNOT3. Dans la même logique d'étude des mécanismes moléculaires responsables de l'hétérogénéité clinique et génétique de la RP, nous avons étudié une forme récessive de la maladie associée à des mutations dans le gène récemment identifié FAMI61 A, dont les mutations dans le même gène donnent lieu à des manifestations cliniques différentes. Nos données ont ainsi accru la connaissance de la relation entre le génotype et le phénotype dans cette forme de maladie. La technique de séquençage du génome entier a été ensuite testée en tant que stratégie pour l'identification du gène de la maladie chez les patients atteints de RP récessive. Cette approche a montré son efficacité dans l'identification de variantes pathologiques qui n'auraient pu être détectées avec d'autres méthodes de dépistage. Enfin, pour la première fois, nous avons identifié une tumeur choroïdienne parmi les manifestations cliniques du PTEN hamartoma tumor syndrome, une maladie génétique causée par des mutations germinales du gène suppresseur de tumeur PTEN. Notre étude a mis en évidence l'hétérogénéité de cette tumeur choroïdienne, montrant que les altérations génétiques et/ou épigénétiques dans les différents gènes peuvent contribuer au développement et à la croissance tumorale.
Resumo:
Summary : Sorting nexin (SNX) family members play important roles in intracellular protein and membrane trafficking, The membrane-tubulating SNX9 protein has been shown to interact with multiple components of the endocytic machinery and to participate in clathrin-mediated endocytosis of cell surface receptors. It has not been investigated if SNX9 may also participate in other protein sorting pathways that involve vesicular transport, specifically the biogenesis of lysosome-related organelles (LROs). Closely related to SNX9 is SNXl8, whose function is largely unknown. In this work, we have characterized the expression of SNX9 and SNXl8 in LRO-containing cells and investigated their role in protein trafficking during the formation of LROs. Our results indicate that SNX9 and SNXl8 are not essential for the formation of LROs, nor for the sorting of melanosomal proteins. We investigated how the level of intracellular SNX9 protein is regulated and found that it is a substrate of the ubiquitin ligase Itch, a member of the NEDD4 family of E3 ubiquitin ligases. Itch ubiquitylates SNX9 and regulates SNX9 levels by enhancing its degradation. Using ? truncated proteins we found that the interaction with SNX9 is mediated by the proline-rich domain of Itch, a domain distinct from the conventional WW recognition domain, and the SH3 domain of SNX9. Interaction with the PRD of Itch is essential for SNX9 ubiquitylation and degradation. We further showed that Itch binding is not affected by tyrosine phosphorylation of SNX9. Using lentivector-mediated siRNA techniques, we found that Itch regulates the level of melanosomal proteins, while knock-down of SNX9 does not alter their level. Interestingly, we revealed that silencing of SNXIS affects the amount of the melanosomal protein Melan-A, but also of SNX9, and that SNXl8 can interact with SNX9. Taken together, our results highlight that the pool of substrates of NEDD4 family E3 ligases extends to proteins containing SH3 domains and provide insight into the potential functions of SNXI8. Résumé : Les membres de la famille des Sorting Nexins (SNX) jouent des rôles importants dans le trafic intracellulaire de protéines et membranes. Il a été démontré que la protéine SNX9, qui génère les tubules membranaires, interagit avec plusieurs composants de la machinerie d'endocytose et participe à l'endocytose des récepteurs de surface mediée par la clathrine. Aucune étude n'a investigué si SNX9 pourrait aussi participer à d'autres voies de trafic de protéines tel que le transport vésiculaire, et plus particulièrement la biogenèse des organites lysosomaux ("lysosome-related organelles", LR©s). SNXl8 est similaire à SNX9, mais sa fonction est largement inconnue. Dans ce travail, nous avons caractérisé l'expression de SNX9 et SNX18 dans des cellules contenants des LROs et investigué leur rôle dans le trafic de protéines pendant la formation des LROS. Nos résultats indiquent que SNX9 et SNXI8 ne sont essentiels ni pour la formation des LR©s, ni pour le trafic de protéines mélanosomales. Nous avons examiné la régulation du niveau intracellulaire de la protéine SNX9 et avons trouvé qu'elle est un substrat de l'ubiquitine ligase Itch, un membre de la famille NEDD4 des ubiquitine ligases E3. Itch ubiquitine SNX9 et régule les niveaux de SNX9 en augmentant sa dégradation. En utilisant des protéines mutées nous avons découvert que l'interaction avec SNX9 est médiée par le domaine riche en proline de Itch, qui est différent du domaine conventionnel de reconnaissance WW, et par le domaine SH3 de SNX9. L'interaction avec le domaine riche en proline de Itch est essentielle pour l'ubiquitination et la dégradation de SNX9. De plus, nous avons montré que cette liaison n'est pas affectée par la phosphorylation des résidus tyrosine de SNX9. En utilisant des vecteurs lentiviraux exprimant des siARN, nous avons trouvé que Itch régule les niveaux de protéines mélanosomales, alors que l'extinction de l'expression de SNX9 ne change pas leurs niveaux. En autre, nous avons révélé que la diminution de SNXl8 affecte le niveau de la protéine mélanosomale Melan-A et de SNX9, et aussi que SNXl8 peut interagir avec SNX9. En résumé, nos résultats démontrent que l'ensemble des substrats de la famille NEDD4 des ubiquitine ligases E3 s'élargit aux protéines contenant des domaines SH3 et ouvrent des perspectives sur les fonctions potentielles de SNXl8.
Resumo:
Cancer is one of the world's leading causes of death with a rising trend in incidence. These epidemiologic observations underline the need for novel treatment strategies. In this regard, a promising approach takes advantage of the adaptive effector mechanisms of the immune system, using T lymphocytes to specifically target and destroy tumour cells. However, whereas current approaches mainly depend on short-lived, terminally differentiated effector T cells, increasing evidence suggests that long lasting and maximum efficient immune responses are mediated by low differentiated memory T cells. These memory T cells should display characteristics of stem cells, such as longevity, self-renewal capacity and the ability to continuously give rise to further differentiated effectors. These stem celllike memory T (TSCM) cells are thought to be of key therapeutic value as they might not only attack differentiated tumour cells, but also eradicate the root cause of cancer, the cancer stem cells themselves. Thus, efforts are made to characterize TSCM cells and to identify the signalling pathways which mediate their induction. Recently, a human TSCM cell subset was described and the activation of the Wnt-ß-catenin signalling pathway by the drug TWS119 during naive CD8+ T (TN) cell priming was suggested to mediate their induction. However, a precise deciphering of the signalling pathways leading to TSCM cell induction and an in-depth characterization of in vitro induced and in vivo occurring TSCM cells remain to be performed. Here, evidence is presented that the induction of human and mouse CD8+ and CD4+ TSCM cells may be triggered by inhibition of mechanistic/mammalian target of rapamycin (mTOR) complex 1 with simultaneously active mTOR complex 2. This molecular mechanism arrests a fraction of activated TN cells in a stem cell-like differentiation state independently of the Wnt-ß-catenin signalling pathway. Of note, TWS119 was found to also inhibit mTORCl, thereby mediating the induction of TSCM cells. Suggesting an immunostimulatory effect, the acquired data broaden the therapeutic range of mTORCl inhibitors like rapamycin, which are, at present, exclusively used due to their immunosuppressive function. Furthermore, by performing broad metabolic analyses, a well-orchestrated interplay between intracellular signalling pathways and the T cells' metabolic programmes could be identified as important regulator of the T cells' differentiation fate. Moreover, in vitro induced CD4+ TSCM cells possess superior functional capacities and share fate-determining key factors with their naturally occurring counterparts, assessed by a first-time full transcriptome analysis of in vivo occurring CD4+ TN cell, TSCM cells and central memory (TCM) cells and in vitro induced CD4+ TSCM cells. Of interest, a group of 56 genes, with a unique expression profile in TSCM cells could be identified. Thus, a pharmacological mechanism allowing to confer sternness to activated TN cells has been found which might be highly relevant for the design of novel T cell-based cancer immunotherapies.
Resumo:
We study dynamics of domain walls in pattern forming systems that are externally forced by a moving space-periodic modulation close to 2:1 spatial resonance. The motion of the forcing induces nongradient dynamics, while the wave number mismatch breaks explicitly the chiral symmetry of the domain walls. The combination of both effects yields an imperfect nonequilibrium Ising-Bloch bifurcation, where all kinks (including the Ising-like one) drift. Kink velocities and interactions are studied within the generic amplitude equation. For nonzero mismatch, a transition to traveling bound kink-antikink pairs and chaotic wave trains occurs.
Resumo:
A simple expression for the Gibbs free energy of formation of a pure component or a eutectic alloy glass, relative to the stable crystalline phase (or phases) at the same temperature is deduced by use of thermodynamic arguments. The expression obtained is supposed to apply to both monocomponent and multicomponent liquid alloys that might become glasses from the supercooled liquid state, irrespective of the critical cooling rate needed to avoid crystallization.
Resumo:
Remarkable differences in the shape of the nematic-smectic-B interface in a quasi-two-dimensional geometry have been experimentally observed in three liquid crystals of very similar molecular structure, i.e., neighboring members of a homologous series. In the thermal equilibrium of the two mesophases a faceted rectanglelike shape was observed with considerably different shape anisotropies for the three homologs. Various morphologies such as dendritic, dendriticlike, and faceted shapes of the rapidly growing smectic-B germ were also observed for the three substances. Experimental results were compared with computer simulations based on the phase field model. The pattern forming behavior of a binary mixture of two homologs was also studied.