990 resultados para Fluorescence emission


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visible upconversion luminescence was observed in Cr3+: Al2O3 crystal under focused femtosecond laser irradiation. The luminescence spectra show that the upconversion luminescence originates from the E-2-(4)A(2) transition of Cr3+. The dependence of the fluorescence intensity of Cr3+ on the pump power reveals that a two-photon absorption process dominates in the conversion of infrared radiation to the visible emission. It is suggested that the simultaneous absorption of two infrared photons produces the population of upper excited states, which leads to the characteristic visible emission from E-2 state of Cr3+.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

kinds of Yb3+- and Na+-codoped CaF2 laser crystal with different Na:Yb ratios of 0, 1.5, and 10 are grown by the temperature gradient technique. Room-temperature absorption, photoluminescence spectra, and fluorescence lifetimes belonging to the transitions between ground state F-2(7/2) and excited state F-2(5/2) of Yb3+ ions in the three crystals are measured to study the effect of Na+. Experimental results show that codoping Na+ ions in different Na:Yb ratios can modulate the spectroscopy and photoluminescence properties of Yb3+ ions in a CaF2 lattice in a large scope. (c) 2005 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prepare bismuth-doped borosilicate glasses and the luminescence properties in infrared wavelength region are investigated. Transmission spectrum, fluorescence spectrum and fluorescence decay curve are measured. The glasses exhibit a broad infrared luminescence peaking at 1340nm with the full width at half maximum of about 205nm, and lifetime of 273 mu s when excited by an 808-nm laser diode. The glasses are promising materials for broadband optical amplifiers and tunable lasers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report near infrared broadband emission of bismuth-doped barium-aluminum-borate glasses. The broadband emission covers 1.3 mum window in optical telecommunication systems. And it possesses wide full width at half maximum (FWHM) of similar to 200nm and long lifetime as long as 350 mus. The luminescent properties are quite sensitive to glass compositions and excitation wavelengths. Based on energy matching conditions, we suggest that the infrared emission may be ascribed to P-3(1) --> P-3(0) transition of Bi+. The broad infrared emission characteristics of this material indicate that it might be a promising candidate for broadband optical fiber amplifiers and tunable lasers. (C) 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near infrared broadband emission characteristics of bismuth-doped aluminophosphate glass have been investigated. Broad infrared emissions peaking at 1210nm, 1173nm and 1300nm were observed when the glass was pumped by 405nm laser diode (LD), 514nm Ar+ laser and 808nm LD, respectively. The full widths at half maximum (FWHMs) are 235nm, 207nm and 300nm for the emissions at 1210nm, 1173nm and 1300nm, respectively. Based on the energy matching conditions, it is suggested that the infrared emission may be ascribed to P-3(1) --> P-3(0) transition of Bi+. The broadband infrared luminescent characteristics of the glasses indicate that they are promising for broadband optical fiber amplifiers and tunable lasers. (C) 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near-infrared broadband emission from bismuth-tantalum-codoped germanium oxide glasses was observed at room temperature when the glasses were pumped by an 808 nm laser diode. The emission band covered the 0, E, S, C, and L bands (1260-1625 nm), with a maximum peak at similar to 1310 nm, a FWHM broader than 400 nm, and a lifetime longer than 200 lis. The observed broadband luminescence was attributed to bismuth clusters in the glasses. Bismuth-tantalum-codoped germanium oxide glass might be promising as amplification media for broadly tunable lasers and wideband amplifiers in optical communications. (c) 2005 Optical Society of America.