884 resultados para Fitting parameters
Resumo:
The objective of this study was to estimate (co)variance components using random regression on B-spline functions to weight records obtained from birth to adulthood. A total of 82 064 weight records of 8145 females obtained from the data bank of the Nellore Breeding Program (PMGRN/Nellore Brazil) which started in 1987, were used. The models included direct additive and maternal genetic effects and animal and maternal permanent environmental effects as random. Contemporary group and dam age at calving (linear and quadratic effect) were included as fixed effects, and orthogonal Legendre polynomials of age (cubic regression) were considered as random covariate. The random effects were modeled using B-spline functions considering linear, quadratic and cubic polynomials for each individual segment. Residual variances were grouped in five age classes. Direct additive genetic and animal permanent environmental effects were modeled using up to seven knots (six segments). A single segment with two knots at the end points of the curve was used for the estimation of maternal genetic and maternal permanent environmental effects. A total of 15 models were studied, with the number of parameters ranging from 17 to 81. The models that used B-splines were compared with multi-trait analyses with nine weight traits and to a random regression model that used orthogonal Legendre polynomials. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most appropriate and parsimonious model to describe the covariance structure of the data. Selection for higher weight, such as at young ages, should be performed taking into account an increase in mature cow weight. Particularly, this is important in most of Nellore beef cattle production systems, where the cow herd is maintained on range conditions. There is limited modification of the growth curve of Nellore cattle with respect to the aim of selecting them for rapid growth at young ages while maintaining constant adult weight.
Resumo:
The objective of this study was to apply factor analysis to describe lactation curves in dairy buffaloes in order to estimate the phenotypic and genetic association between common latent factors and cumulative milk yield. A total of 31 257 monthly test-day milk yield records from buffaloes belonging to herds located in the state of São Paulo were used to estimate two common latent factors, which were then analysed in a multi-trait animal model for estimating genetic parameters. Estimates of (co)variance components for the two common latent factors and cumulated 270-d milk yield were obtained by Bayesian inference using a multiple trait animal model. Contemporary group, number of milkings per day (two levels) and age of buffalo cow at calving (linear and quadratic) as covariate were included in the model as fixed effects. The additive genetic, permanent environmental and residual effects were included as random effects. The first common latent factor (F1) was associated with persistency of lactation and the second common latent factor (F2) with the level of production in early lactation. Heritability estimates for Fl and F2 were 0.12 and 0.07, respectively. Genetic correlation estimates between El and F2 with cumulative milk yield were positive and moderate (0.63 and 0.52). Multivariate statistics employing factor analysis allowed the extraction of two variables (latent factors) that described the shape of the lactation curve. It is expected that the response to selection to increase lactation persistency is higher than the response obtained from selecting animals to increase lactation peak. Selection for higher total milk yield would result in a favourable correlated response to increase the level of production in early lactation and the lactation persistency.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this research was to show the mathematical data obtained through the correlations found between the physical and chemical characteristics of casing layers and the final mushrooms' properties. For this purpose, 8 casing layers were used: soil, soil + peat moss, soil + black peat, soil + composted pine bark, soil + coconut fibre pith, soil + wood fibre, soil + composted vine shoots and, finally, the casing of La Rioja subjected to the ruffling practice. The conclusion that interplays in the fructification process with only the physical and chemical characteristics of casing are complicated was drawn. The mathematical data obtained in earliness could be explained in non-ruffled cultivation. The variability observed for the mushroom weight and the mushroom diameter variables could be explained in both ruffled and non-ruffled cultivations. Finally, the properties of the final quality of mushrooms were established by regression analysis.
Resumo:
Stabilization pond is the most used sewage treatment system in the country, corresponding to approximately 90% of all systems. The systems evaluated were stabilization ponds system of sewage treatment in the city of Natal / RN. This research aimed to analyze the possible uses through physical-chemical and bacteriological of these final effluent ponds for urban uses depending on the characteristics after passage around the treatment system. The parameters used were chosen according to those established by Chernicharo et al. (2006), in order to characterize the effluent. The parameters evaluated were: DO, temperature, pH, conductivity, organic nitrogen, ammonia, NTK, total phosphorus, and series of solid fecal coliforms. Generally, the characteristics of the effluent followed variability found in the literature. The results showed an efficiency that is technically feasible to use the effluent end of some of STPs analyzed when checked parameters alone, if fitting in unrestricted urban use, restricted use and urban land use
Resumo:
A method of determining spectral parameters p (slope of the phase PSD) and T (phase PSD at 1 Hz) and hence tracking error variance in a GPS receiver PLL from just amplitude and phase scintillation indices and an estimated value of the Fresnel frequency has been previously presented. Here this method is validated using 50 Hz GPS phase and amplitude data from high latitude receivers in northern Norway and Svalbard. This has been done both using (1) a Fresnel frequency estimated using the amplitude PSD (in order to check the accuracy of the method) and (2) a constant assumed value of Fresnel frequency for the data set, convenient for the situation when contemporaneous phase PSDs are not available. Both of the spectral parameters (p, T) calculated using this method are in quite good agreement with those obtained by direct measurements of the phase spectrum as are tracking jitter variances determined for GPS receiver PLLs using these values. For the Svalbard data set, a significant difference in the scintillation level observed on the paths from different satellites received simultaneously was noted. Then, it is shown that the accuracy of relative GPS positioning can be improved by use of the tracking jitter variance in weighting the measurements from each satellite used in the positioning estimation. This has significant advantages for scintillation mitigation, particularly since the method can be accomplished utilizing only time domain measurements thus obviating the need for the phase PSDs in order to extract the spectral parameters required for tracking jitter determination.
Resumo:
In the fields of Machine Vision and Photogrammetry, extracted straight lines from digital images can be used either as vector elements of a digital representation or as control entities that allow the determination of the camera interior and exterior orientation parameters. Applications related with image orientation require feature extraction with subpixel precision, to guarantee the reliability of the estimated parameters. This paper presents three approaches for straight line extraction with subpixel precision. The first approach considers the subpixel refinement based on the weighted average of subpixel positions calculated on the direction perpendicular to the segmented straight line. In the second approach, a parabolic function is adjusted to the grey level profile of neighboring pixels in a perpendicular direction to the segmented line, followed by an interpolation of this model to estimate subpixel coordinates of the line center. In the third approach, the subpixel refinement is performed with a parabolic surface adjustment to the grey level values of neighboring pixels around the segmented line. The intersection of this surface with a normal plane to the line direction generates a parabolic equation that allows estimating the subpixel coordinates of the point in the straight line, assuming that this is the critical point of this function. Three experiments with real images were made and the approach based on parabolic surface adjustment has presented better results.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
High amylose cross-linked to different degrees with sodium trimetaphosphate by varying base strength (2% or 4%) and contact time (0.5-4 h) was evaluated as non-compacted systems for sodium diclophenac controlled release. The physical properties and the performance of these products for sodium diclophenac controlled release from non-compacted systems were related to the structures generated at each cross-linking degree. For samples at 2% until 2 h the swelling ability, G' and eta* values increased with the cross-linking degree, because the longer polymer chains became progressively more entangled and linked. This increases water uptake and holding, favoring the swelling and resulting in systems with higher viscosities. Additionally, the increase of cross-linking degree should contribute for a more elastic structure. The shorter chains with more inter-linkages formed at higher cross-linking degrees (2%4h and 4%) make water caption and holding difficult, decreasing the swelling, viscosity and elasticity. For 2% samples, the longer drug release time exhibited for 2%4h sample indicates that the increase of swelling and viscosity contribute for a more sustained drug release, but the mesh size of the polymeric network seems to be determinant for the attachment of drug molecules. For the 4% samples, smaller meshes size should determine less sustained release of drug. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This gaper demonstrates that artificial neural networks can be used effectively for estimation of parameters related to study of atmospheric conditions to high voltage substations design. Specifically, the neural networks are used to compute the variation of electrical field intensity and critical disruptive voltage in substations taking into account several atmospheric factors, such as pressure, temperature, humidity, so on. Examples of simulation of tests are presented to validate the proposed approach. The results that were obtained by experimental evidences and numerical simulations allowed the verification of the influence of the atmospheric conditions on design of substations concerning lightning.