998 resultados para Fission products
Resumo:
The present study investigated whether consuming dairy products naturally enriched in cis-9, trans-11 (c9,t11) conjugated linoleic acid (CLA) by modification of cattle feed increases the concentration of this isomer in plasma and cellular lipids in healthy men. The study had a double-blind cross-over design. Subjects aged 34-60 years consumed dairy products available from food retailers for 1 week and then either control (0.17 g c9,t11 CLA/d; 0.31 g trans-vaccenic acid (tVA)/d) or CLA-enriched (1.43 g c9,t11 CLA/d; 4.71 g tVA/d) dairy products for 6 weeks. After 7 weeks washout, this was repeated with the alternate products. c9,t11 CLA concentration in plasma lipids was lower after consuming the control products, which may reflect the two-fold greater c9,t11 CLA content of the commercial products. Consuming the CLA-enriched dairy products increased the c9,t11 CLA concentration in plasma phosphatidylcholine (PC) (38 %; P=0.035), triacylglycerol (TAG) (22 %; P < 0.0001) and cholesteryl esters (205 %; P < 0.0001), and in peripheral blood mononuclear cells (PBMC) (238 %; P < 0.0001), while tVA concentration was greater in plasma PC (65 %; P=0.035), TAG (98 %; P=0.001) and PBMC (84 %; P=0.004). Overall, the present study shows that consumption of naturally enriched dairy products in amounts similar to habitual intakes of these foods increased the c9,t11 CLA content of plasma and cellular lipids.
Resumo:
Few EU countries meet targets for saturated fatty acid (SFA) intake. Dairy products usually represent the single largest source of SFA, yet evidence indicates that milk has cardioprotective properties. Options for replacing some of the SFA in milk fat with cis-monounsaturated fatty acids (MUFA) through alteration of the cow’s diet are examined. Also, few people achieve minimum recommended intakes (~450–500 mg/d) of the long chain n-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Enrichment of EPA+DHA in poultry meat via bird nutrition is described and how this would impact on habitual intake is discussed.
Resumo:
The interest in animal welfare and welfare-friendly food products has been increasing in Europe over the last 10 years. The media, highlighting traditional farming methods and food scares such as those related to salmonella, bovine spongiform encephalopathy/variant Creutzfeldt-Jakob disease (BSE) and avian influenza, have brought the methods of animal farming to public attention. Concerns about farm animal welfare are reflected in the increase in the number of vegetarians and vegans and an increase in consumers wishing to purchase food which is more animal welfare-friendly. This paper considers consumers’ attitudes to animal welfare and to marketing practices, such as product labelling, welfare grading systems and food assurance marks using comparative data collected in a survey of around 1500 consumers in each of Great Britain, Italy and Sweden as part of the EU-funded Welfare Quality research project. The findings suggest a need for the provision of improved consumer information on the welfare provenance of food using appropriate product labelling and other methods.
Resumo:
This article explores the marketing of organic products. It identifies the issues that pervade the national, organisational, and individual differences within the global organic industry. These are discussed using the marketing mix framework of product, price, promotion, and place of distribution. It concludes that a large percentage of customers, who are spread throughout the community, purchase organic products, most of whom only purchase it occasionally. The most important attributes of organic products are health, quality, and environment. Promotion of these benefits has the potential to demonstrate that, even at the higher price, they still offer value for money.
Resumo:
Consumers are increasingly seeking credence characteristics in the goods they buy and some production processes such as organic or animal welfare friendly systems can be successfully embedded in them. However when ethical considerations are involved, voluntary labeling may not be enough and in such cases a political response emerges such as a ban on unacceptable production as well as the consumption of the 'like products' in question, to confirm the credibility of the World Trade Organization (WTO).
Resumo:
The continuing importance of blue denim maintains indigo as an important vat dye industrially. In this review, we examine the various methods that have been used in the past and are currently used to reduce and dissolve indigo for dyeing. We discuss recent insights into the bacterial fermentation technology, the advantages and disadvantages of the direct chemical methods that have predominated for the last century and potentially cleaner technologies of catalytic hydrogenation and electrochemistry, which are becoming increasingly important. With considerations of environmental impact high on the dyeing industry's agenda, we also discuss the developments that have led to the production of pre-reduced indigo.
Resumo:
The growth and production of anthocyanin, flavonoid and phenolic compounds were evaluated in Lollo Rosso lettuce 'Revolution' grown continuously under films varying in their ability to transmit LTV radiation (completely transparent to IN, transparent above 320, 350, 370 and 3 80 nm and completely opaque to LTV radiation). Plants were grown from seed under UV transparent and UV blocking films and destructively harvested 3-4 weeks after transplanting. Plants under a complete UV blocking film (UV400) produced up to 2.2 times more total above ground dry weight than plants under the UV transparent film. In contrast, anthocyanin content in plants under the UV blocking film was approximately eight times lower than in plants under a UV transparent film. Furthermore, there was a curvilinear relationship between the anthocyanin content and LTV wavelength cutoff such that above 370 run there was no further reduction in anthocyanin content. Fluorescence measurements indicated that photosynthetic performance index was 15% higher under the presence of UVB and UVA (UV280) than under the presence of UVA (UV320) and 53% higher than in the absence of UV radiation suggesting protection of the photosynthetic apparatus possibly by phenolic compounds. These findings are of particular importance as the potential of UV transmitting films to increase secondary compounds may offer the opportunity to produce plants commercially with increased health benefits compared to those grown under conventional films.
Resumo:
The human colonic microbiota imparts metabolic versatility on the colon, interacts at many levels in healthy intestinal and systemic metabolism, and plays protective roles in chronic disease and acute infection. Colonic bacterial metabolism is largely dependant on dietary residues from the upper gut. Carbohydrates, resistant to digestion, drive colonic bacterial fermentation and the resulting end products are considered beneficial. Many colonic species ferment proteins but the end products are not always beneficial and include toxic compounds, such as amines and phenols. Most components of a typical Western diet are heat processed. The Maillard reaction, involving food protein and sugar, is a complex network of reactions occurring during thermal processing. The resultant modified protein resists digestion in the small intestine but is available for colonic bacterial fermentation. Little is known about the fate of the modified protein but some Maillard reaction products (MRP) are biologically active by, e.g. altering bacterial population levels within the colon or, upon absorption, interacting with human disease mechanisms by induction of inflammatory responses. This review presents current understanding of the interactions between MRP and intestinal bacteria. Recent scientific advances offering the possibility of elucidating the consequences of microbe-MRP interactions within the gut are discussed.
Resumo:
A number of strategies are emerging for the high throughput (HTP) expression of recombinant proteins to enable structural and functional study. Here we describe a workable HTP strategy based on parallel protein expression in E. coli and insect cells. Using this system we provide comparative expression data for five proteins derived from the Autographa californica polyhedrosis virus genome that vary in amino acid composition and in molecular weight. Although the proteins are part of a set of factors known to be required for viral late gene expression, the precise function of three of the five, late expression factors (lefs) 6, 7 and 10, is unknown. Rapid expression and characterisation has allowed the determination of their ability to bind DNA and shown a cellular location consistent with their properties. Our data point to the utility of a parallel expression strategy to rapidly obtain workable protein expression levels from many open reading frames (ORFs).
Time-resolved gas-phase kinetic and quantum chemical studies of the reaction of silylene with oxygen
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reaction with O-2. The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at five temperatures in the range 297-600 K. The second order rate constants at 10 Torr were fitted to the Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-11.08 +/- 0.04) + (1.57 +/- 0.32 kJ mol(-1))/RT ln10 The decrease in rate constant values with increasing temperature, although systematic is very small. The rate constants showed slight increases in value with pressure at each temperature, but this was scarcely beyond experimental uncertainty. From estimates of Lennard-Jones collision rates, this reaction is occurring at ca. 1 in 20 collisions, almost independent of pressure and temperature. Ab initio calculations at the G3 level backed further by multi-configurational (MC) SCF calculations, augmented by second order perturbation theory (MRMP2), support a mechanism in which the initial adduct, H2SiOO, formed in the triplet state (T), undergoes intersystem crossing to the more stable singlet state (S) prior to further low energy isomerisation processes leading, via a sequence of steps, ultimately to dissociation products of which the lowest energy pair are H2O + SiO. The decomposition of the intermediate cyclo-siladioxirane, via O-O bond fission, plays an important role in the overall process. The bottleneck for the overall process appears to be the T -> S process in H2SiOO. This process has a small spin orbit coupling matrix element, consistent with an estimate of its rate constant of 1 x 10(9) s(-1) obtained with the aid of RRKM theory. This interpretation preserves the idea that, as in its reactions in general, SiH2 initially reacts at the encounter rate with O-2. The low values for the secondary reaction barriers on the potential energy surface account for the lack of an observed pressure dependence. Some comparisons are drawn with the reactions of CH2 + O-2 and SiCl2 + O-2.