883 resultados para Fire Temperatures
Resumo:
Fire ants are aggressive Neotropical ants that are extensively similar in general biology and morphology, making species identification difficult. Some fire ant species are top-rated pests spreading throughout the world by trade vessels. Many researchers attempted to sort between invasive and native species by using chemical characters, including patterns of venom alkaloids. The present study is the first to report intraspecific variation in some chemical characters, namely, cuticular hydrocarbons and venom alkaloids, within the Brazilian fire ant species Solenopsis saevissima and also reports on within-nest variations among members of different castes. Two different haplotypes (cryptic species) of S. saevissima were clearly identified, one presenting a predominant combination of the venom alkaloids cis- and trans-2-methyl-6-undecylpiperidine with the cuticular hydrocarbons C23, 3-Me-C23, 10-C 25:1, C25, and 3-Me-C25, and the other a predominant combination of cis- and trans-2-methyl-6-tridecenylpiperidine with predominance of 12-C25:1, C25, 11-Me-C25, 3-Me-C25, 13-C27:1, C27, and 13-Me-C 27. Intranest variations revealed that the proportions among these compounds varied sensibly among workers of different sizes, gynes, and males (no alkaloids were detected in the latter). Larva contained vestiges of the same compounds. The recorded chemical profiles are quite different from previous reports with S. saevissima samples from So Paulo. The finds thus support other recent claims that S. saevissima includes cryptic species; the study, moreover, adds the find that they can occur in the same geographical location. © 2012 Eduardo Gonalves Paterson Fox et al.
Resumo:
Starch is arguably one of the most actively investigated biopolymer in the world. In this study, the native (untreated) cassava starch granules (Manihot esculenta, Crantz) were hydrolyzed by standard hydrochloric acid solution at different temperatures (30 °C and 50 °C) and the hydrolytic transformations were investigated by the following techniques: simultaneous thermogravimetry-differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), as well as non-contact atomic force microscopy (NC-AFM), X-ray diffraction (XRD) powder patterns, and rapid viscoamylographic analysis (RVA). After the treatment with hydrochloric acid at different temperatures, the thermal stability, a gradual loss of pasting properties (viscosity), alterations in the gelatinization enthalpy (ΔHgel), were observed. The use of NC-AFM and XRD allowed the observation of the surface morphology and topography of the starch granules and changes in crystallinity of the granules, respectively. © 2012 Elsevier B.V. All rights reserved.
Resumo:
The invasive fire ant Solenopsis invicta is medically important because its venom is highly potent. However, almost nothing is known about fire ant venom proteins because obtaining even milligram-amounts of these proteins has been prohibitively challenging. We present a simple and fast method of obtaining whole venom compounds from large quantities of fire ants. For this, we separate the ants are from the nest soil, immerse them in dual-phase mixture of apolar organic solvent and water, and evaporate each solvent phase in separate. The remaining extract from the aqueous phase is largely made up of ant venom proteins. We confirmed this by using 2D gel electrophoresis while also demonstrating that our new approach yields the same proteins obtained by other authors using less efficient traditional methods. © 2013 Elsevier Ltd.
Resumo:
The use of cooling, without using adequate hygienic practices in primary milk production, allows for the growth of psychrotrophic microorganisms that produce the thermoresistant lipases that give milk a rancid flavor. This study aimed to verify how the variation in temperature influences the lipolytic metabolism of the psychrotrophic organisms. Samples of raw milk were collected and submitted to laboratorial analysis as follows: psychrotrophic bacteria count, lipolytic bacteria count, and free fatty acids dosage. Each sample was divided into 3 aliquots and then incubated at 4, 8, and 12 °C, respectively. For each temperature, analyses were repeated after 12, 24, and 48 h of storage. Despite the psychrotrophs growth increase, according to temperature rise, the lipolytic metabolism was not consistent and presented the lower index at 8 °C, suggesting an intensification of the proteolytic compensatory activity at this temperature. © 2013 Institute of Food Technologists®.
Resumo:
Aims: The effects of fire ensure that large areas of the seasonal tropics are maintained as savannas. The advance of forests into these areas depends on shifts in species composition and the presence of sufficient nutrients. Predicting such transitions, however, is difficult due to a poor understanding of the nutrient stocks required for different combinations of species to resist and suppress fires. Methods: We compare the amounts of nutrients required by congeneric savanna and forest trees to reach two thresholds of establishment and maintenance: that of fire resistance, after which individual trees are large enough to survive fires, and that of fire suppression, after which the collective tree canopy is dense enough to minimize understory growth, thereby arresting the spread of fire. We further calculate the arboreal and soil nutrient stocks of savannas, to determine if these are sufficient to support the expansion of forests following initial establishment. Results: Forest species require a larger nutrient supply to resist fires than savanna species, which are better able to reach a fire-resistant size under nutrient limitation. However, forest species require a lower nutrient supply to attain closed canopies and suppress fires; therefore, the ingression of forest trees into savannas facilitates the transition to forest. Savannas have sufficient N, K, and Mg, but require additional P and Ca to build high-biomass forests and allow full forest expansion following establishment. Conclusions: Tradeoffs between nutrient requirements and adaptations to fire reinforce savanna and forest as alternate stable states, explaining the long-term persistence of vegetation mosaics in the seasonal tropics. Low-fertility limits the advance of forests into savannas, but the ingression of forest species favors the formation of non-flammable states, increasing fertility and promoting forest expansion. © 2013 Springer Science+Business Media Dordrecht.
Telenomus remus Nixon Egg Parasitization of Three Species of Spodoptera Under Different Temperatures
Resumo:
Telenomus remus Nixon is a promising biocontrol agent as an egg parasitoid of Spodoptera spp., but the lack of information on the host-parasitoid interactions in this system precludes its applied use in agriculture. Therefore, we studied the parasitism capacity of T. remus on eggs of Spodoptera cosmioides (Walker), Spodoptera eridania (Cramer), and Spodoptera frugiperda (Smith) in a range of temperatures (19, 22, 25, 28, 31, and 34 ± 1°C) under controlled conditions (70 ± 10% RH and 12 h photophase). Egg masses of Spodoptera spp. were offered to a single-mated T. remus female on a daily basis. More than 80% lifetime parasitism on eggs of S. cosmioides, S. frugiperda, and S. eridania was reached from 1 to 5, 1 to 7, and 1 to 9 days, respectively, at temperatures from 19 to 34°C. More than 80% parasitization was obtained at extreme temperatures for all hosts studied. Lifetime parasitization of S. frugiperda, S. cosmioides, and S. eridania was affected by temperature, with the lowest values for S. frugiperda (34°C) and S. cosmioides (19 and 34°C). Parasitization of S. eridania eggs was reduced around 18% at 28 and 31°C, but dropped more severely at 34°C. Parasitoid longevity was reduced as temperature increased. Thus, our data indicated that T. remus might be suitable as a biocontrol agent against S. eridania, S. cosmioides, and S. frugiperda in geographical areas that fit the temperature range studied here, even though T. remus parasitism was reduced at 34°C. © 2013 Sociedade Entomológica do Brasil.
Resumo:
Zinc oxide (ZnO) thin films were prepared using reactive radio-frequency magnetron sputtering of a pure metallic zinc target onto glass substrates. The evolution of the surface morphology and the optical properties of the films were studied as a function of the substrate temperature, which was varied from 50 to 250 C. The surface topography of the samples was examined using atomic force microscopy (AFM), and their optical properties were studied via transmittance measurements in the UV-Vis-NIR region. DRX and AFM analyses showed that the surface morphology undergoes a structural transition at substrate temperatures of around 150 C. Actually, at 50 C the formation of small grains was observed while at 250 C the grains observed were larger and had more irregular shapes. The optical gap remained constant at ∼3.3 eV for all films. In the visible region, the average optical transmittance was 80 %. From these results, one can conclude that the morphological properties of the ZnO thin films were more greatly affected by the substrate temperature, due to mis-orientation of polycrystalline grains, than were the optical properties. © 2013 Springer Science+Business Media New York.
Resumo:
Multisensor data fusion is a technique that combines the readings of multiple sensors to detect some phenomenon. Data fusion applications are numerous and they can be used in smart buildings, environment monitoring, industry and defense applications. The main goal of multisensor data fusion is to minimize false alarms and maximize the probability of detection based on the detection of multiple sensors. In this paper a local data fusion algorithm based on luminosity, temperature and flame for fire detection is presented. The data fusion approach was embedded in a low cost mobile robot. The prototype test validation has indicated that our approach can detect fire occurrence. Moreover, the low cost project allow the development of robots that could be discarded in their fire detection missions. © 2013 IEEE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The microbiological responses of two bivalves species from Tagus estuary, Venerupis pullastra (native clam) and Ruditapes philippinarum (exotic clam) were investigated during 48h of depuration and subsequent simulated transport in semi-dry conditions at two temperatures (4 and 22°C) until reaching 50% lethal time (LT50). Regardless of temperature and species, the maintenance of clams in water for 48h (depuration period) did not affect LT50 during transport. R.philippinarum showed higher survival rates than V.pullastra, always reaching LT50 later, especially at 4°C. Significant differences between clams' species were found in almost all microbiological parameters. This can be related with clams' biological activity and habitat environmental conditions since both clams do not coexist in Tagus estuary. Depuration was efficient to reduce the bacterial load, particularly Escherichia coli, but not efficient to remove Vibrio spp. In both species, the growth of Vibrio spp. was inhibited at 4°C, whereas exponential growth occurred at 22°C. Total viable counts significantly increased in most treatments, while E.coli counts significantly decreased to undetected levels, except for non-depurated R.philippinarum simulated transported at 4°C. Thus, this study highlights the importance of clams depuration for at least 24h in polluted estuarine areas, followed by transport at low temperatures (4°C). © 2013 Elsevier Ltd.
Resumo:
Listeria monocytogenes, considered as one of the most important foodborne pathogens, is easily found on surfaces, particularly in the form of a biofilm. Biofilms are aggregates of cells that facilitate the persistence of these pathogens in food processing environments conferring resistance to the processes of cleaning and may cause contamination of food during processing, thus, representing a danger to public health. Little is known about the dynamics of the formation and regulation of biofilm production in L.monocytogenes, but several authors reported that the luxS gene may be a precursor in this process. In addition, the product of the inlA gene is responsible for facilitating the entry of the microorganism into epithelial cells that express the receptor E-cadherin, also participates in surface attachment. Thus, 32 strains of L.monocytogenes isolated from different foods (milk and vegetables) and from food processing environments were analyzed for the presence of these genes and their ability to form biofilms on three different surfaces often used in the food industry and retail (polystyrene, glass and stainless steel) at different temperatures (4, 20 and 30°C). All strains had the ilnA gene and 25 out of 32 strains (78.1%) were positive for the presence of the luxS gene, but all strains produced biofilm in at least one of the temperatures and materials tested. This suggests that genes in addition to luxS may participate in this process, but were not the decisive factors for biofilm formation. The bacteria adhered better to hydrophilic surfaces (stainless steel and glass) than to hydrophobic ones (polystyrene), since at 20°C for 24h, 30 (93.8%) and 26 (81.3%) produced biofilm in stainless steel and glass, respectively, and just 2 (6.2%) in polystyrene. The incubation time seemed to be an important factor in the process of biofilm formation, mainly at 35°C for 48h, because the results showed a decrease from 30 (93.8%) to 20 (62.5%) and from 27 (84.4%) to 12 (37.5%), on stainless steel and glass, respectively, although this was not significant (. p=0.3847). We conclude that L.monocytogenes is capable of forming biofilm on different surfaces independent of temperature, but the surface composition may be important factor for a faster development of biofilm. © 2013 Elsevier Ltd.
Resumo:
Neste trabalho, foi estudado o comportamento reológico da polpa de pitanga na faixa de temperatura de pasteurização de 83 a 97 °C. Os resultados indicaram que a polpa apresentou comportamento pseudoplástico e o modelo de Herschel-Bulkley foi considerado o mais adequado para representar o comportamento reológico do produto nas temperaturas estudadas. Os índices de comportamento de fluido (n) variaram na faixa de 0,448 a 0,627. O efeito da temperatura sobre a viscosidade aparente pôde ser descrito pela equação análoga à de Arrenhius, observando-se a diminuição da viscosidade aparente da polpa de pitanga com o aumento da temperatura.
Resumo:
Growth of Red, GIFT and Supreme Nile tilapia strains were evaluated. Fish were cultivated in indoor recirculation systems in 0.5 m³ tanks with controlled temperatures of 22, 28 and 30°C. Random samples of 20 fish from each strain (10 fish tank-1) were weighed at day 7, 30, 60, 90 and 120. Exponential model (y=AeKx) and Gompertz model (y = Aexp(-Be-Kx)) were fitted and the estimates parameters were obtained by Weighted Least Squares. At 22°C, Red, GIFT and Supreme strain presented similar growth and fit of exponential model. GIFT and Supreme strain presented higher growth rate at 30°C of cultivation when compared to Red strain. Temperature influences weight and age at the inflection point. The temperature of cultivation influences the growth description of Red, GIFT and Supreme tilapia strains. It changes the age and weight at inflection point and the qualities of growth model fits, changing the variation of the batch.